• Title/Summary/Keyword: Sensor data analysis

Search Result 1,622, Processing Time 0.031 seconds

Analysis of Saturation and Ground Water level in The Embankment Using TDR Sensor (TDR센서를 이용한 제방의 포화도 및 지하수위 해석)

  • Park, Min-Cheol;Kim, Ki-Yeong;Lee, Jae-Ho;Han, Heui-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.404-415
    • /
    • 2010
  • In this paper, using the TDR sensors, variation of soil water content changes were measured as TDR data. Then filtering technique was determined using Fourier transform. Determine the moisture content of soil and ground water level and tried to determine unsaturated zone. First, variation of water content changes were measured TDR data by indoor experiment. Then as a function of TDR data made for water content of soil. Next, through Acrylic indoor laboratory model experiments, changes in ground water levels and lateral penetration of the field conditions were reproduced in an indoor. Field applicability of the TDR sensor was demonstrated by analysis of this. TDR sensor was installed in the embankment, TDR data were measured by TDR sensor.

  • PDF

A Work-related Musculoskeletal Disorder Risk Assessment Platform using Smart Sensor (스마트센서를 활용한 근골격계 질환 위험 평가 플랫폼)

  • Loh, Byoung Gook
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.93-99
    • /
    • 2015
  • Economic burden of work-related musculoskeletal disorder(WMDs) is increasing. Known causes of WMDs include improper posture, repetition, load, and temperature of workplace. Among them, improper postures play an important role. A smart sensor called SensorTag is employed to estimate the trunk postures including flexion-extension, lateral bend, and the trunk rotational speeds. Measuring gravitational acceleration vector in the smart sensor along the tri-orthogonal axes offers an orientation of the object with the smart sensor attached to. The smart sensor is light in weight and has small form factor, making it an ideal wearable sensor for body posture measurement. Measured data from the smart senor is wirelessly transferred for analysis to a smartphone which has enough computing power, data storage and internet-connectivity, removing need for additional hardware for data post-processing. Based on the estimated body postures, WMDs risks can be conviently gauged by using existing WMDs risk assesment methods such as OWAS, RULA, REBA, etc.

The measurement temperature and analysis used embedded system by internet explorer (인터넷 익스플로러를 통한 임베디드 시스템 기반의 온도 측정 및 분석)

  • 김희식;김영일;설대연;남철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1003-1006
    • /
    • 2004
  • In this paper have developed a system for monitoring and processing the real time sensor data in remote site through network. For realizing this system, measurement equipment and protocol are used to transmit the measurement data to remote server and to process measurement data. In server part, the received data from remote site sensor is converted to text or graphic charts for user. The measurement device in sensor part receives the sensor data form sensor and store the received data to its internal memory for transmitting data to server part through Internet. Also the measurement device can receive data form server. The temperature sensor is connected to the measurement device located in laboratory and the measurement device measures temperature of laboratory which can be confirmed by user through Internet. We have developed a server programworking on the Linux to store measurement data from measurement device to server memory. The program is use for SNMP(Simple Network Management Protocol) to exchange data with measurement device. Also the program changes the measurement data into text and graphic charts for user display. The program is use apache PHP program for user display and inquiry. The real time temperature measurement system can be apply for many parts of industry and living.

  • PDF

CORRELATION ANALYSIS METHOD OF SENSOR DATA FOR PREDICTING THE FOREST FIRE

  • Shon Ho Sun;Chi Jeong Hee;Kim Eun Hee;Ryu Keun Ho;Jung Doo Yeong;kim Kyung Ok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.186-188
    • /
    • 2005
  • Because forest fire changes the direction according to the environmental elements, it is difficult to predict the direction of it. Currently, though some researchers have been studied to which predict the forest fire occurrence and the direction of it, using the remote detection technique, it is not enough and efficient. And recently because of the development of the sensor technique, a lot of In-Situ sensors are being developed. These kinds of In-Situ sensor data are used to collect the environmental elements such as temperature, humidity, and the velocity of the wind. Accordingly we need the prediction technique about the environmental elements analysis and the direction of the forest fire, using the In-Situ sensor data. In this paper, as a technique for predicting the direction of the forest fire, we propose the correlation analysis technique about In-Situ sensor data such as temperature, humidity, the velocity of the wind. The proposed technique is based on the clustering method and clusters the In-Situ sensor data. And then it analyzes the correlation of the multivariate correlations among clusters. These kinds of prediction information not only helps to predict the direction of the forest fire, but also finds the solution after predicting the environmental elements of the forest fire. Accordingly, this technique is expected to reduce the damage by the forest fire which occurs frequently these days.

  • PDF

Design and Implementation of Sensor Registry Data Model for IoT Environment (IoT 환경을 위한 센서 레지스트리 데이터 모델의 설계 및 구현)

  • Lee, Sukhoon;Jeong, Dongwon;Jung, Hyunjun;Baik, Doo-Kwon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.5
    • /
    • pp.221-230
    • /
    • 2016
  • With emerging the Internet of Things (IoT) paradigm, the sensor network and sensor platform technologies have been changed according to exploding amount of sensors. Sensor Registry System (SRS) as a sensor platform is a system that registers and manages sensor metadata for consistent semantic interpretation in heterogeneous sensor networks. However, the SRS is unsuitable for the IoT environment. Therefore, this paper proposes sensor registry data model to register and manager sensor information in the IoT environment. We analyze Semantic Sensor Network Ontology (SSNO) for improving the existed SRS, and design metamodel based on the analysis result. We also build tables in a relational database using the designed metamodel, then implement SRS as a web application. This paper applies the SSNO and sensor ontology examples with translating into the proposed model in order to verify the suitability of the proposed sensor registry data model. As the evaluation result, the proposed model shows abundant expression of semantics by comparison with existed models.

Sensor clustering technique for practical structural monitoring and maintenance

  • Celik, Ozan;Terrell, Thomas;Gul, Mustafa;Catbas, F. Necati
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.273-295
    • /
    • 2018
  • In this study, an investigation of a damage detection methodology for global condition assessment is presented. A particular emphasis is put on the utilization of wireless sensors for more practical, less time consuming, less expensive and safer monitoring and eventually maintenance purposes. Wireless sensors are deployed with a sensor roving technique to maintain a dense sensor field yet requiring fewer sensors. The time series analysis method called ARX models (Auto-Regressive models with eXogeneous input) for different sensor clusters is implemented for the exploration of artificially induced damage and their locations. The performance of the technique is verified by making use of the data sets acquired from a 4-span bridge-type steel structure in a controlled laboratory environment. In that, the free response vibration data of the structure for a specific sensor cluster is measured by both wired and wireless sensors and the acceleration output of each sensor is used as an input to ARX model to estimate the response of the reference channel of that cluster. Using both data types, the ARX based time series analysis method is shown to be effective for damage detection and localization along with the interpretations and conclusions.

Design and Implementation of Big Data Cluster for Indoor Environment Monitering (실내 환경 모니터링을 위한 빅데이터 클러스터 설계 및 구현)

  • Jeon, Byoungchan;Go, Mingu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • Due to the expansion of accommodation space caused by increase of population along with lifestyle changes, most of people spend their time indoor except for the travel time. Because of this, environmental change of indoor is very important, and it affects people's health and economy in resources. But, most of people don't acknowledge the importance of indoor environment. Thus, monitoring system for sustaining and managing indoor environment systematically is needed, and big data clusters should be used in order to save and manage numerous sensor data collected from many spaces. In this paper, we design a big data cluster for the indoor environment monitoring in order to store the sensor data and monitor unit of the huge building Implementation design big data cluster-based system for the analysis, and a distributed file system and building a Hadoop, HBase for big data processing. Also, various sensor data is saved for collection, and effective indoor environment management and health enhancement through monitoring is expected.

Independent Component Analysis of Mixels in Agricultural Land Using An Airborne Hyperspectral Sensor Image

  • Kosaka, Naoko;Shimozato, Masao;Uto, Kuniaki;Kosugi, Yukio
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.334-336
    • /
    • 2003
  • Satellite and airborne hyperspectral sensor images are suitable for investigating the vegetation state in agricultural land. However, image data obtained by an optical sensor inevitably includes mixels caused by high altitude observation. Therefore, mixel analysis method, which estimates both the pure spectra and the coverage of endmembers simultaneously, is required in order to distinguish the qualitative spectral changes due to the chlorophyll quantity or crop variety, from the quantitative coverage change. In this paper, we apply our agricultural independent component analysis (ICA) model to an airborne hyperspectral sensor image, which includes noise and fluctuation of coverage, and estimate pure spectra and the mixture ratio of crop and soil in agricultural land simultaneously.

  • PDF

The Improvement of Target Motion Analysis(TMA) for Submarine with Data Fusion (정보융합 기법을 활용한 잠수함 표적기동분석 성능향상 연구)

  • Lim, Young-Taek;Ko, Soon-Ju;Song, Taek-Lyul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.697-703
    • /
    • 2009
  • Target Motion Analysis(TMA) means to detect target position, velocity and course for using passive sonar system with bearing-only measurement. In this paper, we apply the TMA algorithm for a submarine with Multi-Sensor Data Fusion(MSDF) and we will decide the best TMA algorithm for a submarine by a series of computer simulation runs.

A Data Gathering Approach for Wireless Sensor Network with Quadrotor-based Mobile Sink Node

  • Chen, Jianxin;Chen, Yuanyuan;Zhou, Liang;Du, Yuelin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2529-2547
    • /
    • 2012
  • In this paper, we use a quadrotor-based mobile sink to gather sensor data from the terrestrial deployed wireless sensor network. By analyzing the flight features of the mobile sink node, we theoretically study the flight constraints of height, velocity, and trajectory of the mobile sink node so as to communicate with the terrestrial wireless sensor network. Moreover, we analyze the data amount which the mobile sink can send when it satisfies these flight constraints. Based on these analysis results, we propose a data acquisition approach for the mobile sink node, which is discussed detailed in terms of network performance such as the transmission delay, packet loss rate, sojourning time and mobile trajectory when given the flying speed and height of the mobile sink node. Extensive simulation results validate the efficiency of the proposed scheme.