• Title/Summary/Keyword: Sensor clustering

Search Result 516, Processing Time 0.023 seconds

A Software Update Method Using Clustering WSNs (클러스터링을 이용한 SW 업데이트 방법)

  • Jeong, Hyeyeong;Ahn, Byoungchul
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.4
    • /
    • pp.245-251
    • /
    • 2014
  • Wireless Sensor Networks(WSNs) are applied to many monitoring applications. Present sensor nodes can perform many functions at the same time and contain complex software. During the lifetime of sensor nodes, they are required to reprogram their software because of their new functions, software, software bug fixes. The nodes are inaccessible physically or it is very difficult to upgrade their software by one by one. To upgrade the software of sensor nodes in WSNs remotely, this paper presents an energy efficient method by selecting an optimal relay node. The CHR(Cluster Head Relay) method is compared with SPIN and RANDOM method. Three methods are simulated in NS-2 with the same environmental parameters. Simulation results show that CHR shows faster update time and less power consumption compared with other two methods.

Data Transfer Method Using Relay Node in Hierarchical Mobile Wireless Sensor Network (계층구조 모바일 무선 센서 네트워크에서 중계 노드를 이용한 데이터전송 기법)

  • Kim, Yong;Lee, Doo-Wan;Jang, Kyung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.894-896
    • /
    • 2010
  • In mobile wireless sensor network, Whole nodes can move. In mobile wireless sensor network based on clustering, there can be frequent re-configuration of cluster according to frequent changes of location. Frequent reconfiguration of the cluster cause a lot of power consumption and data loss. To solve this problem, we suggest relay method for sending reliable data and decreases a number of re-configuration of cluster using relay node.

  • PDF

Self-Organized Hierarchy Tree Protocol for Energy-Efficiency in Wireless Sensor Networks

  • THALJAOUI, Adel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.230-238
    • /
    • 2021
  • A sensor network is made up of many sensors deployed in different areas to be monitored. They communicate with each other through a wireless medium. The routing of collected data in the wireless network consumes most of the energy of the network. In the literature, several routing approaches have been proposed to conserve the energy at the sensor level and overcome the challenges inherent in its limitations. In this paper, we propose a new low-energy routing protocol for power grids sensors based on an unsupervised clustering approach. Our protocol equitably harnesses the energy of the selected cluster-head nodes and conserves the energy dissipated when routing the captured data at the Base Station (BS). The simulation results show that our protocol reduces the energy dissipation and prolongs the network lifetime.

Efficient Data-replication between Cluster-heads for Solar-powered Wireless Sensor Networks with Mobile Sinks

  • Jun Min Yi;Hong Sub Lee;Ikjune Yoon;Dong Kun Noh
    • Journal of Internet Technology
    • /
    • v.19 no.6
    • /
    • pp.1801-1810
    • /
    • 2018
  • In this study, an energy-aware data-replication is proposed to effectively support a mobile sink in a solar-powered wireless sensor network (WSN). By utilizing the redundant energy efficiently, the proposed scheme shares the gathered data among the cluster heads using a backbone network, in order to increase data-reliability. It also maintains a backup cluster head in each cluster to enhance topological resilience. The simulation result showed that, compared to conventional clustering techniques, the proposed scheme decreases the total amount of data loss from the mobile sink as well as saving its energy (by reducing its moving distance), while minimizing the unexpected blackout time of the sensor node.

Strong Connection Clustering Scheme for Shortest Distance Multi-hop Transmission in Mobile Sensor Networks (모바일 센서 네트워크에서 최단거리 멀티홉 전송을 위한 강한연결 클러스터 기법)

  • Wu, Mary
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.6
    • /
    • pp.667-677
    • /
    • 2018
  • Since sensor networks consist of sensor nodes with limited energy resources, so efficient energy use of sensor nodes is very important in the design of sensor networks. Sensor nodes consume a lot of energy for data transmission. Clustering technique is used to efficiently use energy in data transmission. Recently, mobile sink techniques have been proposed to reduce the energy load concentrated on the cluster header near a sink node. The CMS(Cluster-based Mobile sink) technique minimizes the generation of control messages by creating a data transmission path while creating clusters, and supports the inter-cluster one-hop transmission. But, there is a case where there is no connectivity between neighbor clusters, it causes a problem of having a long hop data transmission path regardless of local distance. In this paper, we propose a SCBC(Strong connection balancing cluster) to support the path of the minimum number of hops. The proposed scheme minimizes the number of hops in the data transmission path and supports efficient use of energy in the cluster header. This also minimizes a number of hops in data transmission paths even when the sink moves and establishes a new path, and it supports the effect of extending the life cycle of the entire sensor network.

An Energy-Efficient Periodic Data Collection using Dynamic Cluster Management Method in Wireless Sensor Network (무선 센서 네트워크에서 동적 클러스터 유지 관리 방법을 이용한 에너지 효율적인 주기적 데이터 수집)

  • Yun, SangHun;Cho, Haengrae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.4
    • /
    • pp.206-216
    • /
    • 2010
  • Wireless sensor networks (WSNs) are used to collect various data in environment monitoring applications. A spatial clustering may reduce energy consumption of data collection by partitioning the WSN into a set of spatial clusters with similar sensing data. For each cluster, only a few sensor nodes (samplers) report their sensing data to a base station (BS). The BS may predict the missed data of non-samplers using the spatial correlations between sensor nodes. ASAP is a representative data collection algorithm using the spatial clustering. It periodically reconstructs the entire network into new clusters to accommodate to the change of spatial correlations, which results in high message overhead. In this paper, we propose a new data collection algorithm, name EPDC (Energy-efficient Periodic Data Collection). Unlike ASAP, EPDC identifies a specific cluster consisting of many dissimilar sensor nodes. Then it reconstructs only the cluster into subclusters each of which includes strongly correlated sensor nodes. EPDC also tries to reduce the message overhead by incorporating a judicious probabilistic model transfer method. We evaluate the performance of EPDC and ASAP using a simulation model. The experiment results show that the performance improvement of EPDC is up to 84% compared to ASAP.

A Study On The Optimum Node Deployment In The Wireless Sensor Network System (무선 센서 네트워크의 최적화 노드배치에 관한 연구)

  • Choi, Weon-Gap;Park, Hyung-Moo
    • Journal of IKEEE
    • /
    • v.11 no.3
    • /
    • pp.100-107
    • /
    • 2007
  • One of the fundamental problems in wireless sensor networks is the efficient deployment of sensor nodes. The Fuzzy C-Means(FCM) clustering algorithm is proposed to determine the optimum location and minimum number of sensor nodes for the specific application space. We performed a simulation and a experiment using two rectangular and one L shape area. We found the minimum number of sensor nodes for the complete coverage of modeled area, and discovered the optimum location of each nodes. The real deploy experiment using sensor nodes shows the 94.6%, 92.2% and 95.7% error free communication rate respectively.

  • PDF

Flooding Level Cluster-based Hierarchical Routing Algorithm For Improving Performance in Multi-Hop Wireless Sensor Networks (멀티홉 무선 센서 네트워크 환경에서 성능 향상을 위한 플러딩 레벨 클러스터 기반 계층적 라우팅 알고리즘)

  • Hong, Sung-Hwa;Kim, Byoung-Kug;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3B
    • /
    • pp.123-134
    • /
    • 2008
  • In this paper, a routing algorithm for wireless sensor networks is proposed to improve the efficiency of energy consumption in sensor nodes. Each sensor node has the value called ‘Flooding Level’ obtained through the initial flooding from a sink node instead of sending beacon messages in multi-hop sensor field. This value can be used for guaranteeing the sensor nodes to connect with a sink node and determining the roles of cluster-head and cluster-gateway node efficiently and simply during the clustering. If different algorithms are added to our protocol, it will work better in the side of energyefficiency. This algorithm is evaluated through analysis and extensive simulations.

Clustering-Based Cooperative Routing Using ARQ for Supporting Reliability and Transmission Efficiency in Mobile Ad-hoc Wireless Sensor Networks with Rayleigh Fading Channel (레일리페이딩 환경의 모바일 Ad-hoc무선 센서네트워크에서 신뢰성 및 전송효율을 효과적으로 지원하기 위한 ARQ를 사용하는 클러스터링 기반의 협력도움 라우팅)

  • Lee, Joo-Sang;An, Beong-Ku
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.61-68
    • /
    • 2009
  • In this paper, we propose a Cluster-based Cooperative Routing using ARQ (CCRA) for supporting both reliability and transmitting efficient service in mobile ad-hoc wireless sensor networks with Rayleigh fading environments. The main contributions and features of this paper are as follows. First, the clustering method which uses the position information of nodes as underlying structure for supporting reliable transmission services is used. Second, the cooperative data transmission method based on the underlying clustering informations is used to improve both reliability and data transmission efficiency. Third, the ARQ-based transmission is used to improve transmission reliability. Fourth, we consider a realistic approach, in the points of view of mobile ad-hoc wireless sensor networks, based on mobile sensor nodes as well as fixed sensor nodes in the sensor fields while the conventional research for sensor networks focus on mainly fixed sensor networks. The performance evaluation of proposed routing protocol implemented via simulation using Optimized Network Engineering Tool (OPNET) and theoretical analysis.