• Title/Summary/Keyword: Sensor Technology

Search Result 8,758, Processing Time 0.04 seconds

A Relay Selection and Power Allocation Scheme for Cooperative Wireless Sensor Networks

  • Qian, Mujun;Liu, Chen;Fu, Youhua;Zhu, Weiping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1390-1405
    • /
    • 2014
  • This paper investigates optimal relay selection and power allocation under an aggregate power constraint for cooperative wireless sensor networks assisted by amplify-and-forward relay nodes. By considering both transmission power and circuit power consumptions, the received signal-to-noise ratio (SNR) at the destination node is calculated, based on which, a relay selection and power allocation scheme is developed. The core idea is to adaptively adjust the selected relays and their transmission power to maximize the received SNR according to the channel state information. The proposed scheme is derived by recasting the optimization problem into a three-layered problem-determining the number of relays to be activated, selecting the active relays, and performing power allocation among the selected relays. Monte Carlo simulation results demonstrate that the proposed scheme provides a higher received SNR and a lower bit error rate as compared to the average power allocation scheme.

A Pattern-based Query Strategy in Wireless Sensor Network

  • Ding, Yanhong;Qiu, Tie;Jiang, He;Sun, Weifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1546-1564
    • /
    • 2012
  • Pattern-based query processing has not attracted much attention in wireless sensor network though its counterpart has been studied extensively in data stream. The methods used for data stream usually consume large memory and much energy. This conflicts with the fact that wireless sensor networks are heavily constrained by their hardware resources. In this paper, we use piece wise representation to represent sensor nodes' collected data to save sensor nodes' memory and to reduce the energy consumption for query. After getting data stream's and patterns' approximated line segments, we record each line's slope. We do similar matching on slope sequences. We compute the dynamic time warping distance between slope sequences. If the distance is less than user defined threshold, we say that the subsequence is similar to the pattern. We do experiments on STM32W108 processor to evaluate our strategy's performance compared with naive method. The results show that our strategy's matching precision is less than that of naive method, but our method's energy consumption is much better than that of naive approach. The strategy proposed in this paper can be used in wireless sensor network to process pattern-based queries.

A Study on the Laser Welding of Cladding Tube with Temp. Sensor for Fuel Irradiation Test (핵연료 조사시험용 온도센서 피복재의 레이저용접 연구)

  • Kim, Su-Seong;Lee, Cheol-Yong;Kim, Ung-Gi;Lee, Jeong-Won;Go, Jin-Hyeon;Lee, Yeong-Ho
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.106-108
    • /
    • 2005
  • The instrumented fuel irradiation test at a research reactor is needed to evaluate the performance of the developed nuclear fuel. The fuel elements can be designed to measure the center line temperature of fuel pellets during the irradiation test by using temperature sensor. The thermal sensor was composed of thermocouple and sensor sheath. Micro-laser welding technology was adopted to seal between seal tube and sensor sheath with thickness of 0.15 mm. The soundness of welding area has to be confirmed to prevent fission gas of the fuel from leaking out of the element during the fuel irradiation test. In this study, fundamental data for micro-laser welding technology was proposed to seal temperature sensor sheath of the instrumented fuel element. And, micro-laser welding for dissimilar metals between sensor sheath and seal tube was characterized by investigating welding conditions. Moreover, the micro-laser welding technology is closely related to advanced industry. It is expected that the laser material processing technology will be adopted to various a pplications in the industry.

  • PDF

Development of a Fine Digital Sun Sensor for STSAT-2

  • Rhee, Sung-Ho;Lyou, Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.260-265
    • /
    • 2012
  • Satellite devices for fine attitude control of the Science & Technology Satellite-2 (STSAT-2). Based on the mission requirements of STSAT-2, the conventional analog-type sun sensors were found to be inadequate, motivating the development of a compact, fast and fine digital sun sensor (FDSS). The FDSS uses a CMOS image sensor and has an accuracy of less than 0.03degrees, an update rate of 5Hz and a weight of less than 800g. A pinhole-type aperture is substituted for the optical lens to minimize its weight. The target process speed is obtained by utilizing the Field Programmable Gate Array (FPGA), which acquires images from the CMOS sensor, and stores and processes the image data. The sensor accuracy is maintained by a rigorous centroid algorithm. This paper describes the FDSS designs, realizations, tests and calibration results.

Design and fabrication of micro force sensor using MEMS fabrication technology (MEMS 제작기술을 이용한 미세 힘센서 설계 및 제작)

  • 김종호;조운기;박연규;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.497-502
    • /
    • 2002
  • This paper describes a design methodology of a tri-axial silicon-based farce sensor with square membrane by using micromachining technology (MEMS). The sensor has a maximum farce range of 5 N and a minimum force range of 0.1N in the three-axis directions. A simple beam theory was adopted to design the shape of the micro-force sensor. Also the optimal positions of piezoresistors were determined by the strain distribution obtained from the commercial finite element analysis program, ANSYS. The Wheatstone bridge circuits were designed to consider the sensitivity of the force sensor and its temperature compensation. Finally the process for microfabrication was designed using micromachining technology.

  • PDF

Intelligent Piezoelectric Sensor For Traffic Monitoring

  • IM J. I.;PARK K. M.;WANG J. H.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.263-266
    • /
    • 2004
  • This paper describes an intelligent piezoelectric traffic sensor which can be detected the over-weighted vehicles In motion. Based on finite element analysis for the sensor, the sensitivity was analyzed and the design was optimized. Studied parameters are the material properties of constitutional parts, the geometry of the sensor, the weight of the vehicle, and the speed of the vehicle. To verify the simulated results, we manufactured the sensor having the optimized geometry and the sensitivity was measured in the range from 0.5 to 3 ton of tensile and compressive stress. The measured results shows that the sensitivity and linearity of the sensor are closely agree with the designed values.

  • PDF

Development of Baby Care Mobile Application Using Smart Sensor (스마트 센서를 이용한 Baby Care 모바일 어플리케이션 개발)

  • Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.643-647
    • /
    • 2015
  • Nowadays, ubiquitous technology which combines sensors and network technology is emerging and it is called ubiquitous sensor network (USN). In this paper, mobile application for baby care using smart sensor is proposed. The proposed mobile application consists of mobile networks to transfer the information. It detects various information such as falling detecting, crying and fever detecting of infants. It keeps infants from external threats. The developed mobile application will be examined by simulation.

Echelons Scale Identification Scheme of Surveillance and Reconnaissance Sensor Network (감시정찰 센서네트워크에서 제대규모 식별 기법)

  • Choi, Ji-Hye;Kwon, Tae-Wook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.438-444
    • /
    • 2010
  • Surveillance and reconnaissance sensor network system is an application system based on ubiquitous sensor network technology. This technique is to avoid accidental close combat, to minimize the consumption of limited military resources and personnel, and to provide battlefield situational awareness information for the unit's future combat missions. In this paper, we have proposed a echelons scale identification scheme based on information obtained from surveillance and reconnaissance sensor network system.

Micromachined Mercury Drop Tilt Sensor (MEMS 기술을 이용한 수은방울경사각센서 개발)

  • Oh, Jong-Hyun;Oh, Dong-Young;Lee, Seung S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.120-125
    • /
    • 2000
  • This paper proposes a tilt sensor made by MEMS technology. The sensor consists of an electrode glass a small mercury drop a circular channel and a cover glass. The mercury drop is used as medium of a current flow and in contact with two circular chromel electrodes used as an angular-motion resistance When this sensor inclines the mercury drop inside the circular channel moves into the bottom under the influence of gravity. A tilt angle can be measured by changed resistance as tilting this sensor, This sensor has a linear section between +50.$^{\circ}$ and -50.$^{\circ}$ with the accuracy of 2.$^{\circ}$. We are also studying about the enlargement of the linear section and the effect of the size of the mercury drop.

  • PDF

A Sensor Module Overcoming Thick Smoke through Investigation of Fire Characteristics (화재 특성 고찰을 통한 농연 극복 센서 모듈)

  • Cho, Min-Young;Shin, Dong-In;Jun, Sewoong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.237-247
    • /
    • 2018
  • In this paper, we describe a sensor module that monitors fire environment by analyzing fire characteristics. We analyzed the smoke characteristics of indoor fire. Six different environments were defined according to the type of smoke and the flame, and the sensors available for each environment were combined. Based on this analysis, the sensors were selected from the perspective of firefighter. The sensor module consists of an RGB camera, an infrared camera and a radar. It is designed with minimum weight to fit on the robot. the enclosure of sensor is designed to protect against the radiant heat of the fire scene. We propose a single camera mode, thermal stereo mode, data fusion mode, and radar mode that can be used depending on the fire scene. Thermal stereo was effectively refined using an image segmentation algorithm, SLIC (Simple Linear Iterative Clustering). In order to reproduce the fire scene, three fire test environments were built and each sensor was verified.