• 제목/요약/키워드: Sensor Node Platform

검색결과 90건 처리시간 0.026초

센서 네트워크를 위한 자바 가상 기계 (A Java Virtual Machine for Sensor Networks)

  • 김성우;이종민;이중화;신진호
    • 제어로봇시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.13-20
    • /
    • 2008
  • Sensor network consists of a large number of sensor node distributed in the environment being sensed and controlled. The resource-constrained sensor nodes tend to have various and heterogeneous architecture. Thus, it is important to make its software environment platform-independent and reprogrammable. In this paper, we present BeeVM, a Java operating system designed for sensor networks. BeeVM offers a platform-independent Java programming environment with its efficiently executable file format and a set of class APIs for basic operating functions, sensing and wireless networking. BeeVM's high-level native interface and layered network subsystem allow complex program for sensor network to be short and readable. Our platform has been ported on two currently popular hardware platforms and we show its effectiveness through the evaluation of a simple application.

Hybrid acceleration-impedance sensor nodes on Imote2-platform for damage monitoring in steel girder connections

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Ho, Duc-Duy
    • Smart Structures and Systems
    • /
    • 제7권5호
    • /
    • pp.393-416
    • /
    • 2011
  • Hybrid acceleration-impedance sensor nodes on Imote2-platform are designed for damage monitoring in steel girder connections. Thus, the feasibility of the sensor nodes is examined about its performance for vibration-based global monitoring and impedance-based local monitoring in the structural systems. To achieve the objective, the following approaches are implemented. First, a damage monitoring scheme is described in parallel with global vibration-based methods and local impedance-based methods. Second, multi-scale sensor nodes that enable combined acceleration-impedance monitoring are described on the design of hardware components and embedded software to operate. Third, the performances of the multi-scale sensor nodes are experimentally evaluated from damage monitoring in a lab-scaled steel girder with bolted connection joints.

QRS검출에 의한 ECG분석 기능을 갖춘 무선센서노드를 활용한 u-헬스케어 시스템 (An u-healthcare system using an wireless sensor node with ECG analysis function by QRS-complex detection)

  • 이대석;;정완영
    • 센서학회지
    • /
    • 제16권5호
    • /
    • pp.361-368
    • /
    • 2007
  • Small size real-time ECG signal analysis function by QRS-complex detection was put into sensor nodes. Wireless sensor nodes attached on the patient’s body transmit ECG data continuously in normal u-healthcare system. So there are heavy communication traffics between sensor nodes and gateways. New developed platform for real-time analysis of ECG signals on sensor node can be used as an advanced diagnosis and alarming system for healthcare. Sensor node does not need to transmit ECG data all the time in wireless sensor network and to server PC via gateway. When sensor node detects suspicion or abnormality in ECG, then the ECG data in the network was transmitted to the server PC for further powerful analysis. This system can reduce data packet overload and save some power in wireless sensor network. It can also increase the server performance.

모바일 센서 네트워크를 위한 에너지 효율적이고 경제적인 소형 이동 로봇의 개발 (Energy-Effective Low-Cost Small Mobile Robot Implementation for Mobile Sensor Network)

  • 김홍준;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.284-294
    • /
    • 2008
  • In this paper, we describe an implementation of small mobile robot that can be used at research and application of mobile sensor networking. This robot that will constitute the sensor network, as a platform of multi-robot system for each to be used as sensor node, has to satisfy restrictions in many aspects in order to perform sensing, communication protocol, and application algorithms. First, the platform must be designed with a robust structure and low power consumption since its maintenance after deployment is difficult. Second, it must have flexibility and modularity to be used effectively in any structure so that it can be used in various applications. Third, it must support the technique of wireless network for ubiquitous computing environment. At last, to let many nodes be scattered, it must be cost-effective and small. Considering the above restrictions of the mobile platform for sensor network, we designed and implemented robots control the current of actuator by using additional circuit for power efficiency. And we chose MSP430 as MCU, CC2420 as RF transceiver, and etc, that have the strength in the aspect of power. For flexibility and modularity, the platform has expansion ports. The results of experiments are described to show that this robot can act as sensor node by RF communication process with Zigbee standard protocol, execute the navigation process with simple obstacle avoidance and the moving action with RSSI(Received Signal Strength Indicator), operate at low-power, and be made with approx. $100.

Embedded Linux를 기반으로 한 Gas센서용 ARM11 플랫폼 구현에 관한 연구 (Implementation of ARM11 Platform for Gas Sensor Based on Embedded Linux)

  • 안종찬;김영길;나상신
    • 한국정보통신학회논문지
    • /
    • 제13권7호
    • /
    • pp.1335-1343
    • /
    • 2009
  • 본 논문에서 진행한 연구는 고속의 ARM 아키텍처 기반의 ARM11 코어를 적용한 최신 MPU인 S3C6400을 이용한 플랫폼을 구현하고 구현된 플랫폼에 OS로서 리눅스를 포팅하여 Handheld 타입의 가스 센서용 플랫폼 구현에 관한 연구이다. 무선으로 데이터를 전송받기 위하여 블루투스를 이용한 네트워크 환경을 구축하였다. QT/embedded를 사용하여 리눅스 상에서 유연한 어플리케이션 개발 환경을 구축하여 관련된 프로그램을 작성하였다.

센서네트워크를 위한 Dual Priority Scheduling 기반 시스템 소프트웨어 모델링 (System Software Modeling Based on Dual Priority Scheduling for Sensor Network)

  • 황태호;김동순;문연국;김성동;김정국
    • 대한임베디드공학회논문지
    • /
    • 제2권4호
    • /
    • pp.260-273
    • /
    • 2007
  • The wireless sensor network (WSN) nodes are required to operate for several months with the limited system resource such as memory and power. The hardware platform of WSN has 128Kbyte program memory and 8Kbytes data memory. Also, WSN node is required to operate for several months with the two AA size batteries. The MAC, Network protocol, and small application must be operated in this WSN platform. We look around the problem of memory and power for WSN requirements. Then, we propose a new computing model of system software for WSN node. It is the Atomic Object Model (AOM) with Dual Priority Scheduling. For the verification of model, we design and implement IEEE 802.15.4 MAC protocol with the proposed model.

  • PDF

Wireless Impedance-Based SUM for Bolted Connections via Multiple PZT-Interfaces

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • 비파괴검사학회지
    • /
    • 제31권3호
    • /
    • pp.246-259
    • /
    • 2011
  • This study presents a structural health monitoring (SHM) method for bolted connections by using multi-channel wireless impedance sensor nodes and multiple PZT-interfaces. To achieve the objective, the following approaches are implemented. Firstly, a PZT-interface is designed to monitor bolt loosening in bolted connection based on variation of electro-mechanical(EM) impedance signatures. Secondly, a wireless impedance sensor node is designed for autonomous, cost-efficient and multi-channel monitoring. For the sensor platform, Imote2 is selected on the basis of its high operating speed, low power requirement and large storage memory. Finally, the performance of the wireless sensor node and the PZT-interfaces is experimentally evaluated for a bolt-connection model Damage monitoring method using root mean square deviation(RMSD) index of EM impedance signatures is utilized to estimate the strength of the bolted joint.

Development and deployment of large scale wireless sensor network on a long-span bridge

  • Pakzad, Shamim N.
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.525-543
    • /
    • 2010
  • Testing and validation processes are critical tasks in developing a new hardware platform based on a new technology. This paper describes a series of experiments to evaluate the performance of a newly developed MEMS-based wireless sensor node as part of a wireless sensor network (WSN). The sensor node consists of a sensor board with four accelerometers, a thermometer and filtering and digitization units, and a MICAz mote for control, local computation and communication. The experiments include calibration and linearity tests for all sensor channels on the sensor boards, dynamic range tests to evaluate their performance when subjected to varying excitation, noise characteristic tests to quantify the noise floor of the sensor board, and temperature tests to study the behavior of the sensors under changing temperature profiles. The paper also describes a large-scale deployment of the WSN on a long-span suspension bridge, which lasted over three months and continuously collected ambient vibration and temperature data on the bridge. Statistical modal properties of a bridge tower are presented and compared with similar estimates from a previous deployment of sensors on the bridge and finite element models.

Environmental Monitoring System for Base Station with Sensor Node Networks

  • Hur, Chung-Inn;Kim, Hwan-Yong
    • Journal of information and communication convergence engineering
    • /
    • 제7권3호
    • /
    • pp.258-262
    • /
    • 2009
  • A Practical application of environmental monitoring system based on wireless sensor node network with the core of embedded system STR711FR2 microprocessor is presented in the paper. The adaptable and classifiable wireless sensor node network is used to achieve the data acquisition and multi-hop wireless communication of parameters of the monitoring base station environment including repeaters. The structure of the system is proposed and the hardware architecture of the system is designed, and the system operating procedures is proposed. As a result of field test, designed hardware platform operated with 50kbps bit rate and 5MHz channel spacing at 2040Hz. The wireless monitoring system can be managed and swiftly retreated without support of base station environmental monitoring.

CoAP 기반 사물인터넷 시스템 성능평가 (Performance Evaluation of CoAP-based Internet-of-Things System)

  • 추영열;하용준;손수동
    • 한국멀티미디어학회논문지
    • /
    • 제19권12호
    • /
    • pp.2014-2023
    • /
    • 2016
  • Web presence is one of the key issues for extensive deployment of Internet-of-Things (IoT). An obstacle to overcome for Web presence is relatively low computing power of IoT devices. In this paper, we present implementation of an IoT platform based on Constrained Application Protocol (CoAP) which is a web transfer protocol proposed by Internet Engineering Task Force (IETF) for the low performance IoT devices such as Wireless Sensor Network (WSN) nodes and micro-controllers. To qualify the performance of CoAP-based IoT system for such an application as smart grid, we designed a test platform consisting of Raspberry Pi2, Kmote WSN node and a desktop PC. Using open source softwares, CoAP was implemented on top of the platform. Leveraging the GET command defined at CoAP specification, performance of the system was measured in terms of round-trip time (RTT) from web application to the Kmote sensor node. To investigate abnormal cases among the test results, hop-by-hop delays were measured to analyze resulting data. The average response time of CoAP-based communication except the abnormal data was reduced by 23% smaller than the previous research result.