• Title/Summary/Keyword: Sensor Motion Recognition

Search Result 165, Processing Time 0.035 seconds

The Study on Gesture Recognition for Fighting Games based on Kinect Sensor (키넥트 센서 기반 격투액션 게임을 위한 제스처 인식에 관한 연구)

  • Kim, Jong-Min;Kim, Eun-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.552-555
    • /
    • 2018
  • This study developed a gesture recognition method using Kinect sensor and proposed a fighting action control interface. To extract the pattern features of a gesture, it used a method of extracting them in consideration of a body rate based on the shoulders, rather than of absolute positions. Although the same gesture is made, the positional coordinates of each joint caught by Kinect sensor can be different depending on a length and direction of the arm. Therefore, this study applied principal component analysis in order for gesture modeling and analysis. The method helps to reduce the effects of data errors and bring about dimensional contraction effect. In addition, this study proposed a modified matching algorithm to reduce motion restrictions of gesture recognition system.

  • PDF

Wearable Band Sensor for Posture Recognition towards Prosthetic Control (의수 제어용 동작 인식을 위한 웨어러블 밴드 센서)

  • Lee, Seulah;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.265-271
    • /
    • 2018
  • The recent prosthetic technologies pursue to control multi-DOFs (degrees-of-freedom) hand and wrist. However, challenges such as high cost, wear-ability, and motion intent recognition for feedback control still remain for the use in daily living activities. The paper proposes a multi-channel knit band sensor to worn easily for surface EMG-based prosthetic control. The knitted electrodes were fabricated with conductive yarn, and the band except the electrodes are knitted using non-conductive yarn which has moisture wicking property. Two types of the knit bands are fabricated such as sixteen-electrodes for eight-channels and thirty-two electrodes for sixteen-channels. In order to substantiate the performance of the biopotential signal acquisition, several experiments are conducted. Signal to noise ratio (SNR) value of the knit band sensor was 18.48 dB. According to various forearm motions including hand and wrist, sixteen-channels EMG signals could be clearly distinguishable. In addition, the pattern recognition performance to control myoelectric prosthesis was verified in that overall classification accuracy of the RMS (root mean squares) filtered EMG signals (97.84%) was higher than that of the raw EMG signals (87.06%).

Development of Smartphone Application to Calculate Calory using Motion Recognition on the iOS (iOS 스마트폰 환경에서 모션인식을 통한 칼로리 계산 헬스 케어 어플리케이션 서비스 개발)

  • Lim, Dae-whan;Kim, Hyun-soo;Song, Teuk-seob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.627-628
    • /
    • 2013
  • Recently, many people interested in health care moreover, smart devices have been used widly areas. Hence there are many application for smartphone. In this paper, we will introduce some of applications which related with healthcare. We will introduce our application that caluate calory to consume using motion recognition using various smartphone sensors.

  • PDF

Predictive Control of an Efficient Human Following Robot Using Kinect Sensor (Kinect 센서를 이용한 효율적인 사람 추종 로봇의 예측 제어)

  • Heo, Shin-Nyeong;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.957-963
    • /
    • 2014
  • This paper proposes a predictive control for an efficient human following robot using Kinect sensor. Especially, this research is focused on detecting of foot-end-point and foot-vector instead of human body which can be occluded easily by the obstacles. Recognition of the foot-end-point by the Kinect sensor is reliable since the two feet images can be utilized, which increases the detection possibility of the human motion. Depth image features and a decision tree have been utilized to estimate the foot end-point precisely. A tracking point average algorithm is also adopted in this research to estimate the location of foot accurately. Using the continuous locations of foot, the human motion trajectory is estimated to guide the mobile robot along a smooth path to the human. It is verified through the experiments that detecting foot-end-point is more reliable and efficient than detecting the human body. Finally, the tracking performance of the mobile robot is demonstrated with a human motion along an 'L' shape course.

Design and Implementation of a User Activity Auto-recognition System based on Multimodal Sensor in Ubiquitous Computing Environment (유비쿼터스 컴퓨팅환경에서의 Multimodal Sensor 기반의 Health care를 위한 사용자 행동 자동인식 시스템 - Multi-Sensor를 이용한 ADL(activities of daily living) 지수 자동 측정 시스템)

  • Byun, Sung-Ho;Jung, Yu-Suk;Kim, Tae-Su;Kim, Hyun-Woo;Lee, Seung-Hwan;Cho, We-Duke
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.21-26
    • /
    • 2009
  • A sensor system capable of automatically recognize activities would allow many potential Ubiquitous applications. This paper presents a new system for recognizing the activities of daily living(ADL) like walking, running, standing, sitting, lying etc. The system based on the state-dependent motion analysis using Tri-Accelerometer and Zigbee tag. Two accelerometers are used for the classification of body and hand activities. Classification of the environment and instrumental activities is performed based on the hand interaction with an object ID using.

  • PDF

Cooperative mobile robots using fuzzy algorithm

  • Ji, Seunghwan;Kim, Hyuntae;Park, Minkee;Park, Mignon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.468-472
    • /
    • 1992
  • In recent years, lots of researches on autonomous mobile robot have been accomplished. However they focused on environment recognition and its processing to make a decision on the motion, And cooperative multi-robot, which must be able to avoid crash and to make mutual communication, has not been studied much. This paper deals with cooperative motion of two robots, 'Meari 1" and "Meari 2 " made in our laboratory, based on communication between the two. Because there is an interference on communication occurring in cooperative motion of multi-robot, many restrictive conditions are required. Therefore, we have designed these robot system so that communication between them is available and mutual interference is precluded, and we used fuzzy interference to overcome unstability of sensor data.of sensor data.

  • PDF

Fall detection algorithm based on deep learning (딥러닝 기반 낙상 인식 알고리듬)

  • Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.552-554
    • /
    • 2021
  • We propose a fall recognition system using a deep learning algorithm using motion data acquired by a Doppler radar sensor. Among the deep learning algorithms, an RNN that has an advantage in time series data is used to recognize falls. The fall data of the Doppler radar sensor has a temporal characteristic as time series data, and the structure of the RNN is sequenced because the result only determines whether a fall or not It is designed in a structure that outputs a fixed size to the input.

  • PDF

Motion Recognition for Kinect Sensor Data Using Machine Learning Algorithm with PNF Patterns of Upper Extremities

  • Kim, Sangbin;Kim, Giwon;Kim, Junesun
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.4
    • /
    • pp.214-220
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate the availability of software for rehabilitation with the Kinect sensor by presenting an efficient algorithm based on machine learning when classifying the motion data of the PNF pattern if the subjects were wearing a patient gown. Methods: The motion data of the PNF pattern for upper extremities were collected by Kinect sensor. The data were obtained from 8 normal university students without the limitation of upper extremities. The subjects, wearing a T-shirt, performed the PNF patterns, D1 and D2 flexion, extensions, 30 times; the same protocol was repeated while wearing a patient gown to compare the classification performance of algorithms. For comparison of performance, we chose four algorithms, Naive Bayes Classifier, C4.5, Multilayer Perceptron, and Hidden Markov Model. The motion data for wearing a T-shirt were used for the training set, and 10 fold cross-validation test was performed. The motion data for wearing a gown were used for the test set. Results: The results showed that all of the algorithms performed well with 10 fold cross-validation test. However, when classifying the data with a hospital gown, Hidden Markov model (HMM) was the best algorithm for classifying the motion of PNF. Conclusion: We showed that HMM is the most efficient algorithm that could handle the sequence data related to time. Thus, we suggested that the algorithm which considered the sequence of motion, such as HMM, would be selected when developing software for rehabilitation which required determining the correctness of the motion.

A Study on the Motion and Voice Recognition Smart Mirror Using Grove Gesture Sensor (그로브 제스처 센서를 활용한 모션 및 음성 인식 스마트 미러에 관한 연구)

  • Hui-Tae Choi;Chang-Hoon Go;Ji-Min Jeong;Ye-Seul Shin;Hyoung-Keun Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1313-1320
    • /
    • 2023
  • This paper presents the development of a smart mirror that allows control of its display through glove gestures and integrates voice recognition functionality. The hardware configuration of the smart mirror consists of an LCD monitor combined with an acrylic panel, onto which a semi-mirror film with a reflectance of 37% and transmittance of 36% is attached, enabling it to function as both a mirror and a display. The proposed smart mirror eliminates the need for users to physically touch the mirror or operate a keyboard, as it implements gesture control through glove gesture sensors. Additionally, it incorporates voice recognition capabilities and integrates Google Assistant to display results on the screen corresponding to voice commands issued by the user.

Navigation based Motion Counting Algorithm for a Wearable Smart Device (항법 기반 웨어러블 스마트 디바이스 동작 카운트 알고리즘)

  • Park, So Young;Lee, Min Su;Song, Jin Woo;Park, Chan Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.547-552
    • /
    • 2015
  • In this paper, an ARS-EKF based motion counting algorithm for repetitive exercises such as calisthenics is proposed using a smartwatch. Raw sensor signals from accelerometers and gyroscopes are widely used for conventional smartwatch counting algorithms based on pattern recognition. However, generated features from raw data are not intuitive to reflect the movement of motions. The proposed motion counter algorithm is composed of navigation based feature generation and counting with error correction. The candidate features for each activity are velocity and attitude calculated through an ARS-EKF algorithm. In order to select those features which reveal the characteristics of each motion, an exercise frame from the initial sensor frame is introduced. Counting processes are basically based on the zero crossing method, and misdetected counts are eliminated via simple classification algorithms considering the frequency of the counted motions. Experimental results show that the proposed algorithm efficiently and accurately counts the number of exercises.