• Title/Summary/Keyword: Sensor Interface System

Search Result 524, Processing Time 0.028 seconds

A Technique of Applying Embedded Sensors to Intuitive Adjustment of Image Filtering Effect in Smart Phone (스마트폰에서 이미지 필터링 효과의 직관적 조정을 위한 내장센서의 적용 기법)

  • Kim, Jiyeon;Kwon, Sukmin;Jung, Jongjin
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.8
    • /
    • pp.960-967
    • /
    • 2015
  • In this paper, we propose a user interface technique based on embedded sensors applying to apps in smart phone. Especially, we implement avata generation application using image filtering technique for photo image in smart phone. In the application, The embedded sensors are used as intuitive user interface to adjust the image filtering effect for making user satisfied effect in real time after the system produced the image filtering effect for avatar. This technique provides not a simple typed method of parameter values adjustment but a new intuitively emotional adjustment method in image filtering applications. The proposed technique can use sound values from embedded mike sensor for adjusting key values of sketch filter effect if the smart phone user produces sound. Similiarly the proposed technique can use coordinate values from embedded acceleration sensor for adjusting masking values of oil painting filter effect and use brightness values from embedded light sensor for adjusting masking values of sharp filter effect. Finally, we implement image filtering application and evaluate efficiency and effectiveness for the proposed technique.

Environmental Monitoring System for Base Station with Sensor Node Networks

  • Hur, Chung-Inn;Kim, Hwan-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.258-262
    • /
    • 2009
  • A Practical application of environmental monitoring system based on wireless sensor node network with the core of embedded system STR711FR2 microprocessor is presented in the paper. The adaptable and classifiable wireless sensor node network is used to achieve the data acquisition and multi-hop wireless communication of parameters of the monitoring base station environment including repeaters. The structure of the system is proposed and the hardware architecture of the system is designed, and the system operating procedures is proposed. As a result of field test, designed hardware platform operated with 50kbps bit rate and 5MHz channel spacing at 2040Hz. The wireless monitoring system can be managed and swiftly retreated without support of base station environmental monitoring.

The Proposal and Implementation of Wireless Smart Sensor Node and NCAP System based on the IEEE 1451 (IEEE 1451 기반의 Wireless Smart Sensor Node와 NCAP 시스템의 제안과 구현)

  • Heo, Jung-Il;Lim, Su-Young;Seo, Jung-Ho;Kim, Woo-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.5
    • /
    • pp.28-37
    • /
    • 2007
  • IEEE 1451 standard defines an interface for network and transducer. In this paper, We propose an architectural model to configure data acquisition system and wireless smart sensor node based on IEEE 1451 standard. Proposed Network Capable Application Processor(NCAP) supports the task of data acquisition and communication for smart sensor node and network. The NCAP is able to reconfigure without interrupting the functionality of the wireless sensor node and receives the critical information of transducer using the DB. Smart sensor node is able to provide the basic information of sensor in digital format. This digital format is called Transducer Electronic Data Sheet(TEDS), is capable of plug-and-play capability of wireless sensor node and the NCAP. We simplify the format of TEDS and template to apply to wireless network environment. information of TEDS and template is transmitted using ad-hoc routing. This study system uses body temperature sensor and ECG(Electrocardiogram) sensor to provide the medical information service. The format of template is selected by data sheet of the sensor and reconfigured to accurately describe the property of the sensor. DB of NCAP is possible to register new template and information of the property as developing new sensor.

Potentiostat circuits for amperometric sensor (전류법 기반 센서의 정전압 분극 장치 회로)

  • Lim, Shin-Il
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.95-101
    • /
    • 2009
  • A simple and new CMOS potentiostat circuit for amperometric sensor is described. To maintain a constant potential between the reference and working electrodes, only one differential difference amplifier (DDA) is needed in proposed design, while conventional potentiosatat requires at least 2 operational amplifiers and 2 resistors, or more than 3 operational amplifiers and 4 resistors for low voltage CMOS integrated potentiostat. The DDA with rail-to-rail design not only enables the full range operation to supply voltage but also provides simple potentiostat system with small hardwares and low power consumption.

Pet Location Tracking and Remote Monitoring System using a Wireless Sensor Network (무선센서네트워크를 이용한 애완동물 위치추적 및 원격모니터링 시스템)

  • Hwang, Sung-Ho;Park, Jae-Choon;Kwon, Ki-Hyeon;Choi, Shin-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.351-356
    • /
    • 2011
  • In this paper, we design a pet location tracking and remote monitoring system that uses ultrasonic, temperature, humidity and illumination sensors to study behavioral patterns and habits. Using ultrasonic waves to calculate distances, a WSN(Wireless Sensor Network) was constructed to transmit data at pet's location, such as temperature, humidity and illumination, to a sink mote. Data received by the system are stored in the database in real time to trace pet's location. Interference among transmitting motes was eliminated by sequentially transmitting RF beacons using sink mote's beacon as the reference signal. Experiments were performed with the laboratory prototype of a pet animal monitoring system implemented for this study. The system analyzes locations of a pet and displays movement patterns, areas of movement, temperature, humidity and illumination using a GUI (graphical user interface).

EEG Based Brain-Computer Interface System Using Time-multiplexing and Bio-Feedback (Time-multiplexing과 바이오 피드백을 이용한 EEG기반 뇌-컴퓨터 인터페이스 시스템)

  • Bae, Il-Han;Ban, Sang-Woo;Lee, Min-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.236-243
    • /
    • 2004
  • In this paper, we proposed a brain-computer interface system using EEG signals. It can generate 4 direction command signal from EEG signals captured during imagination of subjects. Bandpass filter used for preprocessing to detect the brain signal, and the power spectrum at a specific frequency domain of the EEG signals for concentration status and non-concentration one is used for feature. In order to generate an adequate signal for controlling the 4 direction movement, we propose a new interface system implemented by using a support vector machine and a time-multiplexing method. Moreover, bio-feed back process and on-line adaptive pattern recognition mechanism are also considered in the proposed system. Computer experimental results show that the proposed method is effective to recognize the non-stational brain wave signal.

Application of Sensor Network System using by RF Transceiver (RF송수신기를 이용한 센서네트워크시스템 구현)

  • Ahn, Shi-Hyun;Suh, Young-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.682-684
    • /
    • 2007
  • This paper deals the application of sensor network system to fabricate wireless nodes. This node includes a CPLD(XC2C256), FPGA(XC3S1000) a RF module(Bim-433-F), a Hall Sensor and I also develop the CPLD(EPGA) controlling with Verilog-HDL using ISE. The network was consisst of a PC, a Sink node as a gateway, and three Sensor nodes. This sensor network can reaches 40 m with RF interface using by multi-path network.

  • PDF

A Java Virtual Machine for Sensor Networks (센서 네트워크를 위한 자바 가상 기계)

  • Kim, Seong-Woo;Lee, Jong-Min;Lee, Jung-Hwa;Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Sensor network consists of a large number of sensor node distributed in the environment being sensed and controlled. The resource-constrained sensor nodes tend to have various and heterogeneous architecture. Thus, it is important to make its software environment platform-independent and reprogrammable. In this paper, we present BeeVM, a Java operating system designed for sensor networks. BeeVM offers a platform-independent Java programming environment with its efficiently executable file format and a set of class APIs for basic operating functions, sensing and wireless networking. BeeVM's high-level native interface and layered network subsystem allow complex program for sensor network to be short and readable. Our platform has been ported on two currently popular hardware platforms and we show its effectiveness through the evaluation of a simple application.

Implementation of Real-Time Monitoring System for Livestock Growth Environment Information using Wireless Sensor Network (무선센서 네트워크를 이용한 가축생육환경정보 실시간 모니터링 시스템 구현)

  • Kim, Young-Wung;Paik, Seung-Hyun;Jon, Yong-Jun;Lee, Dae-Ki;Park, Hong Bae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.6
    • /
    • pp.301-309
    • /
    • 2012
  • In this paper, a real-time monitoring system based on WSN is designed and implemented to monitor livestock growth environment information which includes the temperature, humidity and harmful gases such as $CO_{2},\;CO,\;NH_{3},\;H_{2}S$ and so on. The proposed system consists of the wireless sensor nodes, the monitoring management device, the management server and the user interface program based on PC/Smart phone. To verify the performance of the implemented system, gas measurement experiments are performed in laboratory environment by using the designed wireless sensor nodes. And it is able to estimate the concentration of gases. The implemented system is able to monitor the proposed environmental element information through the developed GUI.

A Protocol Interface for Energy-efficient Network Management in Ubiquitous Sensor Networks (유비쿼터스 센서네트워크에서 에너지 효율적인 망관리 프로토콜 인터페이스)

  • Kim, Byoung-Kug;Hur, Kyeong;Eom, Doo-Seop
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.8
    • /
    • pp.1221-1234
    • /
    • 2010
  • MANET(Mobile Ad-hoc Network)s have been researched primary at routing protocols and at the guarantees of QoS(Quality of Service) for mobile environments. Otherwise the Ubiquitous Sensor Networks (USNs) have some limitations in power energies and in processing of sensing data, as well as their network topologies are frequently changed by fading off and node failures. Thus we should redesign network protocols with concerning to energy efficiency for the USNs above all. In this paper, we focus on the protocol interface for managing for USNs based on the surveys. And then we figure the topology of USNs out and design the network protocol interface to make power saved, with data gathering and processing more efficient using our designed packet structures.