• Title/Summary/Keyword: Sensor Data Processing

Search Result 1,387, Processing Time 0.027 seconds

A Study on Construction and Applicability on of Smart Pole Measuring System for Monitoring Steep Slope Sites (급경사지 모니터링을 위한 스마트폴 계측시스템 구축 및 적용성 연구)

  • Lee, Jin-Duk;Chang, Ki-Tae;Bhang, Kon-Joon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.7 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • Smart Pole Measurement System was constructed with not only the core sensors of a GNSS receiver, a TRS sensor and a soil moisture sensor but supplementary installation of power supply and radio communication for monitoring steep slope sites. Also a data processing software for displacement extraction and visualization was developed. Smart Pole Measurement sensor is composed of a GNSS antenna at the top of the pole, a TRS sensor and a gyro sensor vertical below right of the antenna and a soil moisture sensor at the bottom of the pole. The sensor combination extracts not only ground combination in real time but transltion, slide, settlement and soil moisture content. This measuring/monitoring system which cosists of data receiving part, data collection/transfer part and data processing part was built to exercise their functions and then test measuring/monitoring was conducted by introducing artificial displacement and the results were analyzed to evaluate field applicability.

An Energy Efficient Continuous Skyline Query Processing Method in Wireless Sensor Networks (무선 센서 네트워크 환경에서 에너지 효율적인 연속 스카이라인 질의 처리기법)

  • Seong, Dong-Ook;Yeo, Myung-Ho;Yoo, Jae-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.4
    • /
    • pp.289-293
    • /
    • 2009
  • In sensor networks, many methods have been proposed to process in-network aggregation effectively. Contrary to normal aggregation queries, skyline query processing that compare multi-dimension data for producing result is very hard. It is important to filter unnecessary data for energy-efficient skyline query processing. Existing approach like MFTAC restricts unnecessary data transitions by deploying filters to whole sensors. However, network lifetime is reduced by energy consumption for filters transmission. In this paper, we propose a lazy filtering-based skyline query processing algorithm of in-network for reducing energy consumption by filters transmission. The proposed algorithm creates the skyline filter table (SFT) in the data gathering process which sends from sensor nodes to the base station and filters out unnecessary transmissions using it. The experimental results show that the proposed algorithm reduces false positive by 53% and improves network lifetime by 44% on average over MFTAC.

Advanced Big Data Analysis, Artificial Intelligence & Communication Systems

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Recently, big data and artificial intelligence (AI) based on communication systems have become one of the hottest issues in the technology sector, and methods of analyzing big data using AI approaches are now considered essential. This paper presents diverse paradigms to subjects which deal with diverse research areas, such as image segmentation, fingerprint matching, human tracking techniques, malware distribution networks, methods of intrusion detection, digital image watermarking, wireless sensor networks, probabilistic neural networks, query processing of encrypted data, the semantic web, decision-making, software engineering, and so on.

A Data Centric Storage based on Adaptive Local Trajectory for Sensor Networks (센서네트워크를 위한 적응적 지역 트라젝토리 기반의 데이터 저장소 기법)

  • Lim, Hwa-Jung;Lee, Joa-Hyoung;Yang, Dong-Il;Tscha, Yeong-Hwan;Lee, Heon-Guil
    • The KIPS Transactions:PartC
    • /
    • v.15C no.1
    • /
    • pp.19-30
    • /
    • 2008
  • Sensor nodes are used as a storage space in the data centric storage method for sensor networks. Sensor nodes save the data to the node which is computed by hash table and users also access to the node to get the data by using hash table. One of the problems which the data centric storage method has is that queries from many users who are interested in the popular data could be concentrated to one node. In this case, responses for queries could be delayed and the energy of heavy loaded node could be dissipated fast. This would lead to reduction of network life time. In this paper, ALT, Data Centric Storage based on Adaptive Local Trajectory, is proposed as scalable data centric storage method for sensor network. ALT constructs trajectory around the storage node. The scope of trajectory is increased or decreased based on the query frequency. ALT distributes the query processing loads to several nodes so that delay of response is reduced and energy dissipation is also distributed.

An Energy Efficient Query Processing Mechanism using Cache Filtering in Cluster-based Wireless Sensor Networks (클러스터 기반 WSN에서 캐시 필터링을 이용한 에너지 효율적인 질의처리 기법)

  • Lee, Kwang-Won;Hwang, Yoon-Cheol;Oh, Ryum-Duck
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.149-156
    • /
    • 2010
  • As following the development of the USN technology, sensor node used in sensor network has capability of quick data process and storage to support efficient network configuration is enabled. In addition, tree-based structure was transformed to cluster in the construction of sensor network. However, query processing based on existing tree structure could be inefficient under the cluster-based network. In this paper, we suggest energy efficient query processing mechanism using filtering through data attribute classification in cluster-based sensor network. The suggestion mechanism use advantage of cluster-based network so reduce energy of query processing and designed more intelligent query dissemination. And, we prove excellence of energy efficient side with MATLab.

Quality Monitoring Method Analysis for GNSS Ground Station Monitoring and Control Subsystem (위성항법 지상국 감시제어시스템 품질 감시 기법 분석)

  • Jeong, Seong-Kyun;Lee, Sang-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • GNSS(Global Navigation Satellite System) Ground Station performs GNSS signal acquisition and processing. This system generates error correction information and distributes them to GNSS users. GNSS Ground Station consists of sensor station which contains receiver and meteorological sensor, monitoring and control subsystem which monitors and controls sensor station, control center which generates error correction information, and uplink station which transmits correction information to navigation satellites. Monitoring and control subsystem acquires and processes navigation data from sensor station. The processed data is transmitted to GNSS control center. Monitoring and control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation determination module, independent quality monitoring module, and system maintenance and management module. The independent quality monitoring module inspects navigation signal, data, and measurement. This paper introduces independent quality monitoring and performs the analysis using measurement data.

Analysis of Sun Tracking Performance of Various Types of Sun Tracking System used in Parabolic Dish Type Solar Thermal Power Plant (접시형 태양열 발전시스템에서 사용하는 여러 가지 형태의 태양추적시스템의 태양추적성능 분석)

  • Seo, Dong-Hyeok;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.388-396
    • /
    • 2011
  • Sun tracking system is the most important subsystem in parabolic dish type solar thermal power plant, since it determines the amount of thermal energy to be collected, thus affects the efficiency of solar thermal power plant most significantly. Various types of sun tracking systems are currently used. Among them, use of photo sensors to located the sun(which is called sensor type) and use of astronomical algorithm to compute the sun position(which is called program type) are two of the mostly used methods. Recently some uses CCD sensor, like CCD camera, which is called image processing type sun tracking system. This work is concerned with the analysis of sun tracking performance of various types of sun tracking systems currently used in the parabolic dish type solar thermal power plant. We first developed a sun tracking error measurement system. Then, we evaluate the performance of five different types of sun tracking systems, sensor type, program type, hybrid type(use of sensor and computed sun position simultaneously), tracking error compensated program type and image processing type. Experimentally obtained data shows that the tracking error compensated program type sun tracking system is very effective and could provide a good sun tracking performance. Also the data obtained shows that the performance of sensor type sun tracking system is being affected by the cloud significantly, while the performance of a program type sun tracking system is being affected by the sun tracking system's mechanical and installation errors very much. Finally image processing type sun tracking system can provide accurate sun tracking performance, but costs more and requires more computational time.

Smart Sensor for Machine Condition Monitoring Using Wireless LAN (무선 랜 통신을 이용한 기계 상태감시용 스마트 센서)

  • Tae, Sung-Do;Son, Jong-Duk;Yang, Bo-Suk;Kim, Dong-Hyen
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.523-529
    • /
    • 2009
  • Smart sensor is known as intelligent sensor, it is different with other conventional sensors in the case of intelligent system embedded on it. Smart sensor has many benefits e.g. low-cost in usage, self-decision and self-diagnosis abilities. This sensor consists of perception element(sensing element), signal processing and technology of communication. In this work, a bridge and structure of smart sensor has been investigated to be capable to condition monitoring routine. This investigation involves low power consumption, software programming, fast data acquisition ability, and authoritativeness warranty. Moreover, this work also develops smart sensor to be capable to perform high sampling rate, high resolution of ADC, high memory capacity, and good communication for data transfer. The result shows that the developed smart sensor is promising to be applied to various industrial fields.

Design of ESN(Educational Sensor Network) for interpretation of the data

  • Park, In-Deok;Paek, Seung-Eun;Kim, Si-Kyung
    • The Journal of Information Technology
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • This paper has focused on the development of an educational sensor network (ESN) based on wireless sensor networks(WSN) and pervasive monitoring systems for students' activity during scientific experiments. A number of WSN systems have been proposed with integrated wireless transmission, mounted sensor boards and local processing. However, there is no trail to employ WSN on the educational field. In this paper, to facilitate research and development using wireless sensor network and multi-sensor data fusion, the educational sensor network (ESN) hardware development platform is presented. The ESN project is conducted over one semester time period (Spring Semesters). It involves approximately twenty middle school students who enrolled a gifted program in Kongju National University. Though under prepared, these students are in general highly motivated to learning specially when presented with the ESN project. An ESN project such as this is expected to provide an excellent means for teaching and learning scientific and mathematical principles.

  • PDF

Extending Sensor Registry System Using Network Coverage Information (네트워크 커버리지를 이용한 센서 레지스트리 시스템 확장)

  • Jung, Hyunjun;Jeong, Dongwon;Lee, Sukhoon;Baik, Doo-Kwon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.9
    • /
    • pp.425-430
    • /
    • 2015
  • The Sensor Registry System(SRS) provides sensor metadata to a user for instant use and seamless interpretation of sensor data in a heterogeneous sensor network environment. The existing sensor registry system cannot provide sensor metadata in case that the network connection is not available or is unstable. To resolve the problem, this paper proposes an extension of sensor registry system using network coverage information. The extended system sends a set of sensor metadata to the user by using network coverage open data (mobile vendors, signal strength, communication type). The extended SRS proposed in this paper supports a safer sensor metadata provision than the existing SRS, and it thus improves the quality of application services.