• Title/Summary/Keyword: Sensor Data Management

Search Result 900, Processing Time 0.026 seconds

Efficiently Managing Collected from External Wireless Sensors on Smart Devices Using a Sensor Virtualization Framework

  • Lee, Byung-Bog;Hong, SangGi;Lee, Kyeseon;Kim, Naesoo;Ko, JeongGil
    • Information and Communications Magazine
    • /
    • v.30 no.10
    • /
    • pp.79-85
    • /
    • 2013
  • By interacting with external wireless sensors, smartphones can gather high-fidelity data on the surrounding environment to develop various environment-aware, personalized applications. In this work we introduce the sensor virtualization module (SVM), which virtualizes external sensors so that smartphone applications can easily utilize a large number of external sensing resources. Implemented on the Android platform, our SVM simplifies the management of external sensors by abstracting them as virtual sensors to provide the capability of resolving conflicting data requests from multiple applications and also allowing sensor data fusion for data from different sensors to create new customized sensors elements. We envision our SVM to open the possibilities of designing novel personalized smartphone applications.

A Low Power Wireless Communication-based Air Pollutants Measuring System (저전력 무선통신 기반 대기오염 측정시스템)

  • Kang, Jeong Gee;Lee, Bong Hwan
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.6
    • /
    • pp.87-95
    • /
    • 2021
  • Recently interest for air pollution is gradually increasing. However, according to the environmental assessment of air quality, the level of air pollution in the nation is quite serious, and air pollutants measuring facilities are also not enough. In this paper, a secure air pollutants sensor system based low power wireless communication is designed and implemented. The proposed system is composed of three parts: air pollutants measuring sensors module, LoRa-based data transmission module, and monitoring module. In the air pollutants measuring module, the MSP430 board with six big air pollutants measuring sensors are used. The air pollutants sensing data is transmitted to the control server in the monitoring system using LoRa transmission module. The received sensing data is stored in the database of the monitoring system, and visualized in real-time on the map of the sensor locations. The implemented air pollutant sensor system can be used for measuring the level of air quality conveniently in our daily lives.

Development of Rainfall Information Production Technology Using Optical Sensors (Estimation of Real-Time Rainfall Information Using Optima Rainfall Intensity Technique) (광학센서를 이용한 강우정보 생산기법 개발 (최적 강우강도 기법을 이용한 실시간 강우정보 산정))

  • Lee, Byung-Hyun;Kim, Byung-Sik;Lee, Young-Mi;Oh, Cheong-Hyeon;Choi, Jung-Ryel;Jun, Weon-Hyouk
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1101-1111
    • /
    • 2021
  • In this study, among the W-S-R(Wiper-Signal-Rainfall) relationship methods used to produce sensor-based rain information in real time, we sought to produce actual rainfall information by applying machine learning techniques to account for the effects of wiper operation. To this end, we used the gradient descent and threshold map methods for pre-processing the cumulative value of the difference before and after wiper operation by utilizing four sensitive channels for optical sensors which collected rain sensor data produced by five rain conditions in indoor artificial rainfall experiments. These methods produced rainfall information by calculating the average value of the threshold according to the rainfall conditions and channels, creating a threshold map corresponding to the 4 (channel) × 5 (considering rainfall information) grid and applying Optima Rainfall Intensity among the big data processing techniques. To verify these proposed results, the application was evaluated by comparing rainfall observations.

CoAP-based Time Synchronization Algorithm in Sensor Network (센서 네트워크에서의 CoAP 기반 시각 동기화 기법)

  • Kim, Nac-Woo;Son, Seung-Chul;Park, Il-Kyun;Yu, Hong-Yeon;Lee, Byung-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.39-47
    • /
    • 2015
  • In this paper, we propose a new time synchronization algorithm using CoAP(constrained-application protocol) in sensor network environment, which handles a technique that synchronizes an explicit timestamp between sensor nodes not including an additional module for time-setting and sensor node gateway linked to internet time server. CoAP is a standard protocol for sensor data communication among sensor nodes and sensor node gateway to be built much less memory and power supply in constrained network surroundings including serious network jitter, packet losses, etc. We have supplied an exact time synchronization implementation among small and cheap IP-based sensor nodes or non-IP based sensor nodes and sensor node gateway in sensor network using CoAP message header's option extension. On behalf of conventional network time synchronization method, as our approach uses an exclusive protocol 'CoAP' in sensor network, it is not to become an additional burden for synchronization service to sensor nodes or sensor node gateway. This method has an average error about 2ms comparing to NTP service and offers a low-cost and robust network time synchronization algorithm.

On-the-go Nitrogen Sensing and Fertilizer Control for Site-specific Crop Management

  • Kim, Y.;Reid, J.F.;Han, S.
    • Agricultural and Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.18-26
    • /
    • 2006
  • In-field site-specific nitrogen (N) management increases crop yield, reduces N application to minimize the risk of nitrate contamination of ground water, and thus reduces farming cost. Real-time N sensing and fertilization is required for efficient N management. An 'on-the-go' site-specific N management system was developed and evaluated for the supplemental N application to com (Zea mays L.). This real-time N sensing and fertilization system monitored and assessed N fertilization needs using a vision-based spectral sensor and controlled the appropriate variable N rate according to N deficiency level estimated from spectral signature of crop canopies. Sensor inputs included ambient illumination, camera parameters, and image histogram of three spectral regions (red, green, and near-infrared). The real-time sensor-based supplemental N treatment improved crop N status and increased yield over most plots. The largest yield increase was achieved in plots with low initial N treatment combined with supplemental variable-rate application. Yield data for plots where N was applied the latest in the season resulted in a reduced impact on supplemental N. For plots with no supplemental N application, yield increased gradually with initial N treatment, but any N application more than 101 kg/ha had minimal impact on yield.

  • PDF

A Medium Access Control Scheme for Reducing Energy Consumption through Avoiding Receipt of Redundant Messages in Wireless Sensor Networks (무선 센서 네트워크에서 중복 메세지 순신 회피를 통한 에너지 소비절감 매체 접근 제어)

  • Han, Jung-An;Lee, Moon-Ho
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.4
    • /
    • pp.13-24
    • /
    • 2005
  • The sensor network is a key component of the ubiquitous computing system which is expected to be widely utilized in logistics control, environment/disaster control, medical/health-care services, digital home and other applications. Nodes in the sensor network are small-sized and exposed to adverse environments. They are demanded to perform their missions with very limited power supply only. Also the sensor network is composed of much more nodes than the wireless ad hoc networks are. In case that some nodes consume up their power capacity, the network topology should change, and rerouting/retransmission is necessitated. Communication protocols studied for conventional wireless networks or ad hoc networks are not suited for the sensor network resultantly. Schemes should be devised to control the efficient usage of node power in the sensor network. This paper proposes a medium access protocol to enhance the efficiency of energy consumption in the sensor network node. Its performance is analyzed by simulation.

  • PDF

Sensor Node Control Considering Energy-Efficiency in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율성을 고려한 센서 노드 제어)

  • Park, Hee-Dong
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.271-276
    • /
    • 2014
  • The life-time and performance of a wireless sensor network is closely related to energy-efficiency of sensor nodes. In this paper, to increase energy-efficiency, each sensor node operates in one of three operational modes which are normal, power-saving, and inactive. In normal mode sensor nodes sense and transmit data with normal period, whereas sensor nodes in power-saving mode have three-times longer period. In inactive mode, sensor nodes do not sense and transmit any data, which makes the energy consumption to be minimized. Plus, the proposed algorithm can avoid unnecessary energy consumption by preventing transmitting duplicate sensed data. We implemented and simulated the proposed algorithm using Tiny OS based ZigbeX platfom and NS-2, respectively. Performance evaluation results show that the proposed algorithm can prolong sensor networks' lifespan by efficiently reducing energy consumption and its standard deviation of all sensor nodes.

A Protocol Interface for Energy-efficient Network Management in Ubiquitous Sensor Networks (유비쿼터스 센서네트워크에서 에너지 효율적인 망관리 프로토콜 인터페이스)

  • Kim, Byoung-Kug;Hur, Kyeong;Eom, Doo-Seop
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.8
    • /
    • pp.1221-1234
    • /
    • 2010
  • MANET(Mobile Ad-hoc Network)s have been researched primary at routing protocols and at the guarantees of QoS(Quality of Service) for mobile environments. Otherwise the Ubiquitous Sensor Networks (USNs) have some limitations in power energies and in processing of sensing data, as well as their network topologies are frequently changed by fading off and node failures. Thus we should redesign network protocols with concerning to energy efficiency for the USNs above all. In this paper, we focus on the protocol interface for managing for USNs based on the surveys. And then we figure the topology of USNs out and design the network protocol interface to make power saved, with data gathering and processing more efficient using our designed packet structures.

Enhanced Secure Sensor Association and Key Management in Wireless Body Area Networks

  • Shen, Jian;Tan, Haowen;Moh, Sangman;Chung, Ilyong;Liu, Qi;Sun, Xingming
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.453-462
    • /
    • 2015
  • Body area networks (BANs) have emerged as an enabling technique for e-healthcare systems, which can be used to continuously and remotely monitor patients' health. In BANs, the data of a patient's vital body functions and movements can be collected by small wearable or implantable sensors and sent using shortrange wireless communication techniques. Due to the shared wireless medium between the sensors in BANs, it may be possible to have malicious attacks on e-healthcare systems. The security and privacy issues of BANs are becoming more and more important. To provide secure and correct association of a group of sensors with a patient and satisfy the requirements of data confidentiality and integrity in BANs, we propose a novel enhanced secure sensor association and key management protocol based on elliptic curve cryptography and hash chains. The authentication procedure and group key generation are very simple and efficient. Therefore, our protocol can be easily implemented in the power and resource constrained sensor nodes in BANs. From a comparison of results, furthermore, we can conclude that the proposed protocol dramatically reduces the computation and communication cost for the authentication and key derivation compared with previous protocols. We believe that our protocol is attractive in the application of BANs.

A Study on the Configuration of BOP and Implementation of BMS Function for VRFB (VRFB를 위한 BOP 구성 및 BMS 기능구현에 관한 연구)

  • Choi, Jung-Sik;Oh, Seung-Yeol;Chung, Dong-Hwa;Park, Byung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.74-83
    • /
    • 2014
  • This paper proposes a study on the configuration of balancing of plant(BOP) and implementation of battery management system(BMS) functions for vanadium redox flow battery(VRFB) and propose a method consists of sensor and required design specifications BOP system configuration. And it proposes an method of the functions implementation and control algorithm of the BMS for flow battery. Functions of BMS include temperature control, the charge and discharge control, flow control, level control, state of charge(SOC) estimation and a battery protection through the sensor signal of BOP. Functions of BMS is implemented by the sensor signal, so it is recognized as a very important factor measurement accuracy of the data. Therefore, measuring a mechanical signal(flow rate, temperature, level) through the BOP test model, and the measuring an electrical signal(cell voltage, stack voltage and stack current) through the VRFB charge-discharge system and analyzes the precision of data in this paper. Also it shows a good charge-discharge test results by the SOC estimation algorithm of VRFB. Proposed BOP configuration and BMS functions implementation can be used as a reference indicator for VRFB system design.