• Title/Summary/Keyword: Sensor Assessment

Search Result 393, Processing Time 0.035 seconds

Relationship Between Strength of Hip Muscles and Performance of Close Kinetic Chain Dynamic Lower Extremity Stability Test

  • Lee, Hyeon-ju;Hwang, Ui-jae;Jung, Sung-hoon;Ahn, Sun-hee;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.27 no.4
    • /
    • pp.257-263
    • /
    • 2020
  • Background: The hip muscle plays various roles. Several types of functional performance tests are used for the assessment of patients with various lower extremity injuries. Hip muscle functions are important to test the performance of maintaining the spine, pelvic, and leg during bridging exercise. We designed a novel functional performance test tool, which we named close kinetic chain dynamic lower extremity stability (CKCLE) test to assess hip muscle functions. Objects: The purpose of this study was to determine the relationship between CKCLE test and hip extensor, external rotator, and abductor strengths. Methods: Twenty-two subjects were recruited in the present study (13 males and 9 females). The hip extensor, external rotator, and abductor muscle strengths were measured using a Smart KEMA strength sensor. When the examiner said "Go", the subject performed the CKCLE test by moving one leg from the floor and touching the opposite knee and then return to the floor while maintaining the bridging position. The subjects attempted as many "touches" as possible in the allotted time (20 seconds) during the maximal tests. The correlation between the hip muscle (extensor, external rotator, and abductor) strength of the supporting leg and the number of CKCLE tests performed in 20 seconds was determined using the Pearson correlation. Results: Hip extensor (r = 0.626, p < 0.05), hip external rotator (r = 0.616, p < 0.05), and hip abductor muscle strengths (r = 0.475, p < 0.05) positively correlated with the number of CKCLE tests performed. Conclusion: We designed a CKCLE test and found that performance in the test correlated with hip extensor, external rotator, and abductor muscle strengths. The result suggests that the CKCLE test can be applied as a performance test to assess the functions of the hip extensor, external rotator, and hip abductor muscles.

Oxygen Fluctuation Monitored with High Frequency in a Eutrophic Urban Stream (the Anyang Stream) and the Effect of Weather Condition (부영양 도심하천(안양천)에서 고빈도 관측에 의한 산소고갈과 기상조건의 영향 연구)

  • Kim, Sun-Jung;Shin, Myoung-Sun;Kim, Jai-Ku;Lee, Jae-Yong;Jeong, Karp-Joo;Ahn, Bu-Young;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.34-41
    • /
    • 2012
  • The variation of dissolved oxygen (DO) was monitored with high frequency by an automatic data-logging sensor in a eutrophic urban stream (the Anyang Stream) located in a metropolitan area of Seoul, South Korea. In general, DO showed the diel variation of increase in daytime and decrease at night, implying that primary production is a major mechanism of oxygen supply in this ecosystem. The fluctuation of oxygen was determined by rainfall. DO depletion was most obvious after a rainfall resulting in an anoxic condition for a day, which is thought to be caused by scouring of periphyton and organic ooze at the stream bottom. Seasonally DO was higher in winter and frequently depleted in warm seasons. DO depletion was often at a dangerous level for fish survival. Fish survey showed that little fish was living at the study site and oxygen depletion may be the major stress factor for aquatic animals. From the results it can be suggested that a high frequency monitoring of oxygen should be established for the proper assessment of aquatic habitats and better management strategy.

An Aptamer-Based Electrochemical Sensor That Can Distinguish Influenza Virus Subtype H1 from H5

  • Lee, Jin-Moo;Kim, JunWon;Ryu, Ilhwan;Woo, Hye-Min;Lee, Tae Gyun;Jung, Woong;Yim, Sanggyu;Jeong, Yong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2037-2043
    • /
    • 2017
  • The surface protein hemagglutinin (HA) mediates the attachment of influenza virus to host cells containing sialic acid and thus facilitates viral infection. Therefore, HA is considered as a good target for the development of diagnostic tools for influenza virus. Previously, we reported the isolation of single-stranded aptamers that can distinguish influenza subtype H1 from H5. In this study, we describe a method for the selective electrical detection of H1 using the isolated aptamer as a molecular probe. After immobilization of the aptamer on Si wafer, enzyme-linked immunosorbent assay (ELISA) and field emission scanning electron microscopy (FE-SEM) showed that the immobilized aptamer bound specifically to the H1 subtype but not to the H5 subtype. Assessment by cyclic voltammetry (CV) also demonstrated that the immobilized aptamer on the indium thin oxide-coated surface was specifically bound to the H1 subtype only, which was consistent with the ELISA and FE-SEM results. Further measurement of CV using various amounts of H1 subtype provided the detection limit of the immobilized aptamer, which showed that a nanomolar scale of target protein was sufficient to produce the signal. These results indicated that the selected aptamer can be an effective probe for distinguishing the subtypes of influenza viruses by monitoring current changes.

Performance Evaluation of Pansharpening Algorithms for WorldView-3 Satellite Imagery

  • Kim, Gu Hyeok;Park, Nyung Hee;Choi, Seok Keun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.413-423
    • /
    • 2016
  • Worldview-3 satellite sensor provides panchromatic image with high-spatial resolution and 8-band multispectral images. Therefore, an image-sharpening technique, which sharpens the spatial resolution of multispectral images by using high-spatial resolution panchromatic images, is essential for various applications of Worldview-3 images based on image interpretation and processing. The existing pansharpening algorithms tend to tradeoff between spectral distortion and spatial enhancement. In this study, we applied six pansharpening algorithms to Worldview-3 satellite imagery and assessed the quality of pansharpened images qualitatively and quantitatively. We also analyzed the effects of time lag for each multispectral band during the pansharpening process. Quantitative assessment of pansharpened images was performed by comparing ERGAS (Erreur Relative Globale Adimensionnelle de Synthèse), SAM (Spectral Angle Mapper), Q-index and sCC (spatial Correlation Coefficient) based on real data set. In experiment, quantitative results obtained by MRA (Multi-Resolution Analysis)-based algorithm were better than those by the CS (Component Substitution)-based algorithm. Nevertheless, qualitative quality of spectral information was similar to each other. In addition, images obtained by the CS-based algorithm and by division of two multispectral sensors were shaper in terms of spatial quality than those obtained by the other pansharpening algorithm. Therefore, there is a need to determine a pansharpening method for Worldview-3 images for application to remote sensing data, such as spectral and spatial information-based applications.

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

Geometric Calibration and Accuracy Evaluation of Smartphone Camera (스마트폰 카메라의 기하학적 검정과 정확도 평가)

  • Kim, Jin-Soo;Jin, Cheong-Gil;Lee, Seong-Kyu;Lee, Sun-Gu;Choi, Chul-Uong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.115-125
    • /
    • 2011
  • The smartphones which have been recently are embedded with high resolution quality camera, assisted GPS, accelerometer, gyroscope and various sensors including magnetometer sensor that could be directly used for measurement. This study aims to suggest the possible application of smartphone camera providing high resolution images in terms of photogrammetry by calibrating it and assessing its accuracy. First of all, prior to the accuracy assessment of smartphone camera, camera calibration was conducted to correct lens distortion of each camera and the accuracy of image coordinates and object coordinates calculated by bundle adjustment during this procedure was analyzed. Also regarding three-dimensional positioning, result analysis depending on considering lens distortion coefficients was conducted, and finally relative accuracy of smartphone camera on metric camera was assessed. The result showed that in terms of distortion correction of smartphone camera, also higher order symmetric radial lens distortion coefficients should be considered, and three dimensional position determined by smartphone images was a little difference from that by metric camera. Therefore it is expected that smartphone images have huge possibility to be used for photogrammetry.

Application of Acoustic Emission Technique for Bridge Cable Monitoring (교량 케이블 적용 강연선 모니터링을 위한 음향방출 기법 검토)

  • Kim, Ga-Young;Seo, Dong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.121-125
    • /
    • 2018
  • This paper presents the assessment of 7-wire strand monitoring using acoustic emission technique for bridges. 7-wire strand is widely used construction materials to provide additional tensile force to bridges. PSC (PreStressed Concrete) bridge and cable-stayed bridge are representatives for such cases. However, as the bridge aging progresses recently, corrosion problems of strand are emerging. For this reason, various NDT (Non-Destructive Test) methods for cable inspection are being studied and applied to the field. One of the NDT methods, acoustic emission technique, is known as an effective technique to detect cable damage and breakage. In this study, to evaluate the applicability of acoustic emission technique to bridges, acoustic emission signals according to damage of the strand were acquired and analyzed by tensile test. Moreover, The optimal AE sensor type was selected for field application. As a result, it is considered that the acoustic emission technique will be able to detect corrosion breakage and signs of rupture.

Assessment of radiopacity of restorative composite resins with various target distances and exposure times and a modified aluminum step wedge

  • Mir, Arash Poorsattar Bejeh;Mir, Morvarid Poorsattar Bejeh
    • Imaging Science in Dentistry
    • /
    • v.42 no.3
    • /
    • pp.163-167
    • /
    • 2012
  • Purpose: ANSI/ADA has established standards for adequate radiopacity. This study was aimed to assess the changes in radiopacity of composite resins according to various tube-target distances and exposure times. Materials and Methods: Five 1-mm thick samples of Filtek P60 and Clearfil composite resins were prepared and exposed with six tube-target distance/exposure time setups (i.e., 40 cm, 0.2 seconds; 30 cm, 0.2 seconds; 30 cm, 0.16 seconds, 30 cm, 0.12 seconds; 15 cm, 0.2 seconds; 15 cm, 0.12 seconds) performing at 70 kVp and 7 mA along with a 12-step aluminum stepwedge (1 mm incremental steps) using a PSP digital sensor. Thereafter, the radiopacities measured with Digora for Windows software 2.5 were converted to absorbencies (i.e., A=-log (1-G/255)), where A is the absorbency and G is the measured gray scale). Furthermore, the linear regression model of aluminum thickness and absorbency was developed and used to convert the radiopacity of dental materials to the equivalent aluminum thickness. In addition, all calculations were compared with those obtained from a modified 3-step stepwedge (i.e., using data for the 2nd, 5th, and 8th steps). Results: The radiopacities of the composite resins differed significantly with various setups (p<0.001) and between the materials (p<0.001). The best predicted model was obtained for the 30 cm 0.2 seconds setup ($R^2$=0.999). Data from the reduced modified stepwedge was remarkable and comparable with the 12-step stepwedge. Conclusion: Within the limits of the present study, our findings support that various setups might influence the radiopacity of dental materials on digital radiographs.

Reliability and validity of pelvic mobility measurement using a cushion sensor in healthy adults

  • Jung, Seung-Hwa;Kim, Su-Kyeong;Lee, Ji-Hyun;Choi, Soo-Ih;Park, Dae-Sung
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.2
    • /
    • pp.74-81
    • /
    • 2020
  • Objective: To prevent low back pain, an objective evaluation tool to evaluate pelvic mobility and exercise to improve the flexibility of the lumbar region is needed. The purpose of this study was to compare the results of pelvic mobility measurements using the Wii Balance Board (WBB) and Sensbalance Therapy Cushion (STC), evaluate the usefulness of the STC as a tool for measuring pelvic mobility. Design: Cross-sectional study. Methods: Fifty healthy subjects participated in this study. The subjects performed pelvic mobility range, proprioception, reaction time and reach of the arm using the STC. The pelvic movement parameter was measured two times to determine the intra-rater reliability. To measure the correlation between lumbar muscle tension and pelvic mobility, Myovision was used to measure tension of L4, L5 level erector spinae muscle. Correlations between measured variables were checked to determine the validity of the pelvic mobility assessment tool. Results: STC showed high test-retest reliability in pelvic tilt measurement and reaching task [intraclass correlation coefficients (3,1)=0.804-0.915]. The relationship between WBB and STC showed a significant positive correlation with the pelvic tilt and reaching task (p<0.05). Posterior tilt and erector spinae activation (Lt. L5) showed a significant negative correlation (p<0.05). Left, right tilt and erector spinae activation (L5) showed a significant negative correlation (p<0.05). Conclusions: This study confirmed the advantages of the STC and found efficiency as an objective measuring device of pelvic mobility.

A Performance Test for Assessment of the RFID/USN Inter-working System's Applicability to the Construction Industry (RFID/USN 연동 시스템의 건설 산업 적용을 위한 성능 실험에 관한 연구)

  • Yoo, Ji-Yeon;Choi, Nu-Ri;Kim, Chang-Wan;Kim, Hyoung-Kwan;Han, Seung-Heon;Kim, Moon-Kyum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.880-885
    • /
    • 2007
  • In the last decades, the resource used in the construction process has become much more various in kinds and increased in number as construction has become enlargement and complexity. Resource management on a construction site has been recognized as a detrimental factor to influence project success, therefore various technologies have been applied by the construction industry to streamline resource management. RFID/USN interworking system composed of RFID technology and sensor network supports automation of resource management and real-time information networking. Most of research efforts for RFID technology in the construction industry have been limited to object identification technology. The study proposed herein it to verify the applicability of RFID/USN interworking system to the construction industry. The identification rates of RFID/USN interworking system by distance and degree and by type of materials was identified and analyzed.

  • PDF