• Title/Summary/Keyword: Sensitivity-free approach

Search Result 34, Processing Time 0.025 seconds

Model Updating of a Car Body Structure Using a Generalized Free-Interface Mode Sensitivity Method (일반화 자유경계 모드 감도법을 이용한 차체구조물의 모델개선)

  • Jang, Gyeong-Jin;Park, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1133-1145
    • /
    • 2000
  • It is necessary to develop an efficient analysis method to identify the dynamic characteristics of a large mechanical structure and update its finite element model. That is because these processes need the huge computation of a large structure and iterative estimation due to the use of the first- order sensitivity. To efficiently carry out these processes, a new method, called the generalized free-interface mode sensitivity method, has been proposed in the authors' preceeding paper. This method is based on substructuring approach such as a free-interface method and a generalized synthesis algorithm. In this paper, the proposed method is applied to the model updating of a car body structure to verify its accuracy and reliability for a large mechanical structure.

An analytical solution to the vibration characteristics for continuous girder bridge-track coupling system and its application

  • Feng, Yulin;Jiang, Lizhong;Zhou, Wangbao;Zhang, Yuntai;Liu, Xiang
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.601-612
    • /
    • 2021
  • To study the vibration characteristics of a high-speed railway continuous girder bridge-track coupling system (HSRCBT), a coupling vibration analysis model of an m-span continuous girder bridge-subgrade-track system with n-span approach bridge was established. The model was based on the energy and its variational method, where both the interlaminar slip and shear deformation effects were considered. In addition, the free vibration equations and natural boundary conditions of the HSRCBT were derived. Further, according to the coordination principle of deformation and mechanics, an analytical method for calculating the natural vibration frequencies of the HSRCBT was obtained. Three typical bridge-subgrade-track coupling systems of high-speed railway were taken and the results of finite element analysis were compared to those of the analytical method. The errors between the simulation results and calculated values of the analytical method were less than 3%, thus verifying the analytical method proposed in this paper. Finally, the analytical method was used to investigate the influence of the number of the approach bridge spans and the interlaminar stiffness on the natural vibration characteristics of the HSRCBT based on the degree of sensitivity. The results suggest the approach bridges have a critical number of spans and in general, the precision requirements of the analysis could be met by using 6-span approach bridges. The interlaminar vertical compressive stiffness has very little influence on the low-order natural vibration frequency of HSRCBT, but does have a significant influence on higher-order natural vibration frequency. As the interlaminar vertical compressive stiffness increases, the degree of sensitivity to interlaminar stiffness of each of the HSRCBT natural vibration characteristics decrease and gradually approach zero.

Topology Optimization for Large-displacement Compliant Mechanisms Using Element Free Galerkin Method

  • Du, Yixian;Chen, Liping
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • This paper presents a topology optimization approach using element-free Galerkin method (EFGM) for the optimal design of compliant mechanisms with geometrically non-linearity. Meshless method has an advantage over the finite element method(FEM) because it is more capable of handling large deformation resulted from geometrical nonlinearity. Therefore, in this paper, EFGM is employed to discretize the governing equations and the bulk density field. The sensitivity analysis of the optimization problem is performed by incorporating the adjoint approach with the meshless method. The Lagrange multipliers method adjusted for imposition of both the concentrated and continuous essential boundary conditions in the EFGM is proposed in details. The optimization mathematical formulation is developed to convert the multi-criteria problem to an equivalent single-objective problem. The popularly applied interpolation scheme, solid isotropic material with penalization (SIMP), is used to indicate the dependence of material property upon on pseudo densities discretized to the integration points. A well studied numerical example has been applied to demonstrate the proposed approach works very well and the non-linear EFGM can obtain the better topologies than the linear EFGM to design large-displacement compliant mechanisms.

Color Images Utilizing the Properties Emotional Quantification Algorithm (이미지 색채 속성을 활용한 감성 정량화 알고리즘)

  • Lee, Yean-Ran
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.11
    • /
    • pp.1-9
    • /
    • 2015
  • Emotion recognition and regular controls are concentrated interest in computer studies to emotional changes. Thus, the quantified by objective assessment methods are essential for application of color sensibility computing situations. In this paper, it is applied to a digital color image emotion emotional computing calculations numbered recognized as one representation. Emotional computing research approach consists of a color attribute to the image recognition focused sensibility and emotional attributes of color is the color, brightness and saturation separated by. Computes the sensitivity weighted according to the score and the percentage increase or decrease in the sensitivity property tone applied to emotional expression. Sensitivity calculation is free-degree (X), and calculates the tension (Y-axis). And free-level (X-axis) coordinate of emotion, which is located the intersection of the tension (Y-axis) as a sensitivity point. The emotional effect of the Russell coordinates are utilizing the core (Core Affect). Tue numbers represent the size and sensitivity in the emotional relationship between emotional point location and quantified by computing the color sensibility.

Improved nonlinear modelling approach of simply supported PC slab under free blast load using RHT model

  • Rashad, Mohamed;Yang, T.Y.
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.121-131
    • /
    • 2019
  • Due to the heterogeneity nature of the concrete, it is difficult to simulate the hyperdynamic behaviour and crack trajectory of concrete material when subjected to explosion loads. In this paper, a 3D nonlinear numerical study was conducted to simulate the hyperdynamic behaviour of concrete under various loading conditions using Riedel-Hiermaier-Thoma (RHT) model. Detailed calibration was conducted to identify the optimal parameters for the RHT model on the material level. For the component level, the calibrated RHT parameters were used to simulate the failure behaviour of plain concrete (PC) slab under free air blast load. The response was compared with an available experimental result. The results show the proposed numerical model can accurately simulate the crack trajectory and the failure mode of the PC slab under free air blast load.

Application of Best Estimate Approach for Modelling of QUENCH-03 and QUENCH-06 Experiments

  • Kaliatka, Tadas;Kaliatka, Algirdas;Vileiniskis, Virginijus
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.419-433
    • /
    • 2016
  • One of the important severe accident management measures in the Light Water Reactors is water injection to the reactor core. The related phenomena are investigated by performing experiments and computer simulations. One of the most widely known is the QUENCH test-program. A number of analyses on QUENCH tests have also been performed by different computer codes for code validation and improvements. Unfortunately, any deterministic computer simulation is not free from the uncertainties. To receive the realistic calculation results, the best estimate computer codes should be used for the calculation with combination of uncertainty and sensitivity analysis of calculation results. In this article, the QUENCH-03 and QUENCH-06 experiments are modelled using ASTEC and RELAP/SCDAPSIM codes. For the uncertainty and sensitivity analysis, SUSA3.5 and SUNSET tools were used. The article demonstrates that applying the best estimate approach, it is possible to develop basic QUENCH input deck and to develop the two sets of input parameters, covering maximal and minimal ranges of uncertainties. These allow simulating different (but with the same nature) tests, receiving calculation results with the evaluated range of uncertainties.

Time domain identification of multiple cracks in a beam

  • He, Z.Y.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.773-789
    • /
    • 2010
  • It is well known that the analytical vibration characteristic of a cracked beam depends largely on the crack model. In the forward analysis, an improved and simplified approach in modeling discrete open cracks in beams is presented. The effective length of the crack zone on both sides of a crack with stiffness reduction is formulated in terms of the crack depth. Both free and forced vibrations of cracked beams are studied in this paper and the results from the proposed modified crack model and other existing models are compared. The modified crack model gives very accurate predictions in the modal frequencies and time responses of the beams particularly with overlaps in the effective lengths with reduced stiffness. In the inverse analysis, the response sensitivity with respect to damage parameters (the location and depth of crack, etc.) is derived. And the dynamic response sensitivity is used to update the damage parameters. The identified results from both numerical simulations and experiment work illustrate the effectiveness of the proposed method.

Buzz Margin Determination of Supersonic Intake (초음속 흡입구의 버즈여유 결정기법)

  • Park, Ik-Soo;Choi, Jong-Ho;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.132-135
    • /
    • 2011
  • A technology for buzz margin determination is suggested to obtain stable shock structure and high compression efficiency of supersonic intake. By using the shock equilibrium equation of supersonic intake, sensitivity equation of terminal shock position for free stream and back pressure is induced and disturbances are quantified through statistical approach. Numerical results show that the sensitivity of shock position for disturbances is proportional to Mach number and the back pressure is dominant for variance of terminal shock position.

  • PDF

Application of digital polymerase chain reaction technology for noninvasive prenatal test

  • Lee, Seung Yong;Hwang, Seung Yong
    • Journal of Genetic Medicine
    • /
    • v.12 no.2
    • /
    • pp.72-78
    • /
    • 2015
  • Recently, noninvasive prenatal test (NIPT) has been adopted as a primary screening tool for fetal chromosomal aneuploidy. The principle of NIPT lies in isolating the fetal fraction of cell-free DNA in maternal plasma and analyzing it with bioinformatic tools to measure the amount of gene from the target chromosome, such as chromosomes 21, 18, and 13. NIPT will contribute to decreasing the need for unnecessary invasive procedures, including amniocentesis and chorionic villi sampling, for confirming fetal aneuploidy because of its higher positive predictive value than that of the conventional prenatal screening method. However, its greater cost than that of the current antenatal screening protocol may be an obstacle to the adoption of this innovative technique in clinical practice. Digital polymerase chain reaction (dPCR) is a novel approach for detecting and quantifying nucleic acid. dPCR provides real-time diagnostic advantages with higher sensitivity, accuracy, and absolute quantification than conventional quantitative PCR. Since the groundbreaking discovery that fetal cell-free nucleic acid exists in maternal plasma was reported, dPCR has been used for the quantification of fetal DNA and for screening for fetal aneuploidy. It has been suggested that dPCR will decrease the cost by targeting specific sequences in the target chromosome, and dPCR-based noninvasive testing will facilitate progress toward the implementation of a noninvasive approach for screening for trisomy 21, 18, and 13. In this review, we highlight the principle of dPCR and discuss its future implications in clinical practice.

Label-free and sensitive detection of purine catabolites in complex solutions by surface-enhanced raman spectroscopy

  • Davaa-Ochir, Batmend;Ansah, Iris Baffour;Park, Sung Gyu;Kim, Dong-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.342-352
    • /
    • 2022
  • Purine catabolite screening enables reliable diagnosis of certain diseases. In this regard, the development of a facile detection strategy with high sensitivity and selectivity is demanded for point-of-care applications. In this work, the simultaneous detection of uric acid (UA), xanthine (XA), and hypoxanthine (HX) was carried out as model purine catabolites by surface-enhanced Raman Spectroscopy (SERS). The detection assay was conducted by employing high-aspect ratio Au nanopillar substrates coupled with in-situ Au electrodeposition on the substrates. The additional modification of the Au nanopillar substrates via electrodeposition was found to be an effective method to encapsulate molecules in solution into nanogaps of growing Au films that increase metal-molecule contact and improve substrate's sensitivity and selectivity. In complex solutions, the approach facilitated ternary identification of UA, XA, and HX down to concentration limits of 4.33 𝜇M, 0.71 𝜇M, and 0.22 𝜇M, respectively, which are comparable to their existing levels in normal human physiology. These results demonstrate that the proposed platform is reliable for practical point-of-care analysis of biofluids where solution matrix effects greatly reduce selectivity and sensitivity for rapid on-site disease diagnosis.