• Title/Summary/Keyword: Sensitivity vector

Search Result 280, Processing Time 0.026 seconds

3D Optimal Design of Transformer Tank Shields using Design Sensitivity Analysis

  • Yingying Yao;Ryu, Jae-Seop;Koh, Chang-Seop;Dexin Xie
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.23-31
    • /
    • 2003
  • A novel 3D shape optimization algorithm is presented for electromagnetic devices carry-ing eddy current. The algorithm integrates the 3D finite element performance analysis and the steepest descent method with design sensitivity and mesh relocation method. For the design sensitivity formula, the adjoint variable vector is defined in complex form based on the 3D finite element method for eddy current problems. A new 3D mesh relocation method is also proposed using the deformation theory of the elastic body under stress to renew the mesh as the shape changes. The design sensitivity f3r the sur-face nodal points is also systematically converted into that for the design variables for the parameterized optimization application. The proposed algorithm is applied to the optimum design of the tank shield model of the transformer and the effectiveness is proved.

Adjoint Variable Method combined with Complex Variable for Structural Design Sensitivity (보조변수법과 복소변수를 연동한 설계 민감도 해석 연구)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.418-423
    • /
    • 2008
  • Among various sensitivity evaluation techniques, semi-analytical method is quite popular since this method is more advantageous than analytical method and global finite difference method. However, SAM reveals severe inaccuracy problem when relatively large rigid body motions are identified for individual elements. Such errors result from the numerical differentiation of the pseudo load vector calculated by the finite difference scheme. In the present study, the adjoint variable method combined with complex variable is proposed to obtain the shape and size sensitivity for structural optimization. The complex variable can present accurate results regardless of the perturbation size as well as easy to be implemented. Through a few numerical examples of the static problem for the structural sensitivity, the efficiency and reliability of the adjoint variable method combined with complex variable is demonstrated.

  • PDF

A Relationship between Kinetic Visual Acuity and Contrast Sensitivity (동적시력과 대비감도의 상관관계)

  • Shim, Moon-Sik;Kang, Hye-Sook;Kim, Sang-Hyun;Shim, Hyun-Suk
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.2
    • /
    • pp.225-229
    • /
    • 2014
  • Purpose: The study was to analyze the correlation between kinetic visual acuity (KVA), visual acuity(static visual angle, SVA) and contrast sensitivity. Methods: Ninety-nine undergraduate students studying Ophthalmic Optics were fully corrected by the Topcon CV-3000 Phoropter. The contrast sensitivity was measured for the participants under the photopic condition ($100cd/m^2$) with Vector Vision CSV-1000E at 2.5 meter, while KVA was measured with KOWA AS-4A. The participants were classified into three groups L, M and H depending on the KVA (0.1~0.3, 0.31~0.6 and greater than 0.61, respectively) and were analyzed whether there was the correlation between the contrast sensitivity, visual acuity and refractive error. Results: The KVA was correlated with the contrast sensitivity for 3 cpd (r=0.26), for 6 cpd (r=0.48), for 12 cpd (r=0.38) and 18 cpd (r=0.47). Except for the low frequency of 3 cpd, they all were higher than the one of the SVA and the KVA (r = -0.37). The contrast sensitivity for 3, 6, 12 and 18 cpd was 59.41, 92.22, 38.41 and 14.39 in the group L, respectively. The contrast sensitivity in the group M was 66.03, 108.78, 53.51 and 19.20 and the one in the group H was 70.90, 146.10, 62.90 and 25.33 for 3, 6, 12 and 18 cpd, respectively. Conclusions: The correlation of the contrast sensitivity and the KVA was higher than the one of the contrast sensitivity and the SVA. It can be assumed that the contrast sensitivity will be high if the KVA is high, except for the case for low spatial frequency.

Influence of Sensor Noise on the Localization Error in Multichannel SQUID Gradiometer System (다채널 스퀴드 미분계에서 센서 잡음이 위치추정 오차에 미치는 영향)

  • 김기웅;이용호;권혁찬;김진목;정용석;강찬석;김인선;박용기;이순걸
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.98-104
    • /
    • 2004
  • We analyzed a noise-sensitivity profile of a specific SQUID sensor system for the localization of brain activity. The location of a neuromagnetic current source is estimated from the recording of spatially distributed SQUID sensors. According to the specific arrangement of the sensors, each site in the source space has different sensitivity, that is, the difference in the lead field vectors. Conversely, channel noises on each sensor will give a different amount of the estimation error to each of the source sites. e.g., a distant source site from the sensor system has a small lead-field vector in magnitude and low sensitivity. However, when we solve the inverse problem from the recorded sensor data, we use the inverse of the lead-field vector that is rather large, which results in an overestimated noise power on the site. Especially, the spatial sensitivity profile of a gradiometer system measuring tangential fields is much more complex than a radial magnetometer system. This is one of the causes to make the solutions of inverse problems unstable on intervening of the sensor noise. In this study, in order to improve the localization accuracy, we calculated the noise-sensitivity profile of our 40-channel planar SQUID gradiometer system, and applied it as a normalization weight factor to the source localization using synthetic aperture magnetometry.

  • PDF

Model of Least Square Support Vector Machine (LSSVM) for Prediction of Fracture Parameters of Concrete

  • Kulkrni, Kallyan S.;Kim, Doo-Kie;Sekar, S.K.;Samui, Pijush
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.29-33
    • /
    • 2011
  • This article employs Least Square Support Vector Machine (LSSVM) for determination of fracture parameters of concrete: critical stress intensity factor ($K_{Ic}^s$) and the critical crack tip opening displacement ($CTOD_c$). LSSVM that is firmly based on the theory of statistical learning theory uses regression technique. The results are compared with a widely used Artificial Neural Network (ANN) Models of LSSVM have been developed for prediction of $K_{Ic}^s$ and $CTOD_c$, and then a sensitivity analysis has been performed to investigate the importance of the input parameters. Equations have been also developed for determination of $K_{Ic}^s$ and $CTOD_c$. The developed LSSVM also gives error bar. The results show that the developed model of LSSVM is very predictable in order to determine fracture parameters of concrete.

Hangul Font Outline Vector Modification Algorithm According to Weather Information (날씨에 따른 한글 폰트 윤곽선 벡터 변형 알고리즘)

  • Park, Dong-Yeon;Jo, Se-Ran;Kim, Nam-Hee;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1328-1337
    • /
    • 2022
  • Recently, research on various font designs has been actively conducted to deliver effective emotional information in a digital environment. In this study, we propose a Hangul font outline vector modification algorithm that effectively conveys sensitivity according to weather information and can be transformed immediately. The algorithm performs a series of transformations: sets outlines according to design pattern templates, calculates the glyph's position to reflect physical rules, splits outline segments into smaller sizes and deforms the outlines. Through this, we could create several vector font designs such as humidity, cloud, wind, and snow. The usability evaluation was close to good, so it can be used in diverse ways if we improve readability and effective design expression.

Design Sensitivity Analysis of an Engine Mount System using the Multi-Domain FRF-based Substructuring Method (다중 전달함수합성 법을 이용한 엔진마운트 시스템의 설계민감도 해석)

  • 이두호;황우석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.237-244
    • /
    • 2002
  • Analyzing acoustic-structural systems such as automobiles and aircraft, the FRF-based substructuring (FBS) method is one of the most powerful tools. In this paper, a general procedure for the parametric sensitivity analysis of vibro-acoustic problems has been presented using the multi-domain FRF-based substructuring formulation. For an acoustic-structural system sub-structured by multiple domains, the substructuring formulation gives the reaction farces on the interface boundaries. The design sensitivity formula is obtained from the direct differentiation of the reaction force expression with respect to the design vector. As a practical application, the proposed design sensitivity formula is applied to an engine mount system of passenger car. An objective of the problem is to identify the most effective engine mounts and bushes in minimizing the interior noise over the concerned rpm range. The comparison of the sensitivity results with those of the finite difference method shows excellent agreement. In addition, stiffness modifications of the mounts and bushes identified through the design sensitivity analysis lead to a successful decrease of the interior noise. This results show usefulness of the present method very well.

Analysis of Induction Machine Flux Observer (유도전동기 자속추정기의 특성해석)

  • Nam Hyun-Taek;Lee Kyung-Joo;Choi Jong-Woo;Kim Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.7-10
    • /
    • 2001
  • To obtain a high performance in a direct vector controlled induction machine, it is essential to correct estimation of rotor flux. The accuracy of flux observers for induction machines inherently depends on parameter sensitivity. This paper presents an analysis method for conventional flux observers using Parameter Sensitivity. The Parameter sensitivity is defined as the ratio of the percentage change in the system transfer function to the percentage change of the parameter variation. We define the ratio between real flux and estimated flux as the transfer function, and analyzed a parameter sensitivity of this transfer function.

  • PDF

The Improved Binary Tree Vector Quantization Using Spatial Sensitivity of HVS (인간 시각 시스템의 공간 지각 특성을 이용한 개선된 이진트리 벡터양자화)

  • Ryu, Soung-Pil;Kwak, Nae-Joung;Ahn, Jae-Hyeong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.21-26
    • /
    • 2004
  • Color image quantization is a process of selecting a set of colors to display an image with some representative colors without noticeable perceived difference. It is very important in many applications to display a true color image in a low cost color monitor or printer. The basic problem is how to display 256 colors or less colors, called color palette, In this paper, we propose improved binary tree vector quantization based on spatial sensitivity which is one of the human visual properties. We combine the weights based on the responsibility of human visual system according to changes of three Primary colors in blocks of images with the process of splitting nodes using eigenvector in binary tree vector quantization. The test results show that the proposed method generates the quantized images with fine color and performs better than the conventional method in terms of clustering the similar regions. Also the proposed method can get the better result in subjective quality test and WSNR.

Determination of Optimal Accelerometer Locations using Mode-Shape Sensitivity (진동형상 민감도에 의한 가속도계 최적위치 결정)

  • Kwon, Soon-Jung;Shin, Soo-Bong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.29-36
    • /
    • 2006
  • This paper proposes a new algorithm of MS-EIDV (modal sensitivity-effective independence distribution vector) for determining optimal accelerometer locations (OAL) by using the Fisher Information Matrix (FIM) derived from mode-shape sensitivities. Also, the paper provides a reasonable guideline for selecting OAL which can reflect dynamic responses of a structure effectively. Since OAL should be determined with known values of structural parameters but since the parameters can be estimated by applying an inverse method such as SI (system identification) using measured response, the paper proposes a statistical method to overcome the paradox by considering the error bound of the structural parameters. To examine the proposed methods, a frequency-domain SI method has been applied. By using the identified results, the minimum necessary number of accelerometers could be selected depending on the number of target measurable modes. Through simulation studies, the results by applying EIDV method directly using the information of mode shapes were compared with those by applying the proposed MS-EIDV.