• Title/Summary/Keyword: Sensitivity of Low Temperature

Search Result 355, Processing Time 0.023 seconds

Methane Gas Sensing Properties of the Zinc Oxide Nanowhisker-derived Gas Sensor

  • Moon, Hyung-Sin;Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.106-109
    • /
    • 2012
  • A low power methane gas sensor with microheater was fabricated by silicon bulk micromachining technology. In order to heat up the sensing layer to operating temperature, a platinum (Pt) micro heater was embedded in the gas sensor. The line width and gap of the microheater was 20 ${\mu}m$ and 4.5 ${\mu}m$, respectively. Zinc oxide (ZnO) nanowhisker arrays were grown on a sensor from a ZnO seed layer using a hydrothermal method. A 200 ml aqueous solution of 0.1 mol zinc nitrate hexahydrate, 0.1 mol hexamethylenetetramine, and 0.02 mol polyethylenimine was used for growing ZnO nanowhiskers. Temperature distribution of the sensor was analyzed by infrared thermal camera. The optimum temperature for highest sensitivity was found to be $250^{\circ}C$ although relatively high (64%) sensitivity was obtained even at as low a temperature as $150^{\circ}C$. The power consumption was 72 mW at $250^{\circ}C$, and only 25 mW at $150^{\circ}C$.

CO gas sensing characteristics of ZnO and ZnO-CuO thick films prepared by acquous precipitation (액상침전법으로 제조된 ZnO와 ZnO-CuO후막의 일산화탄소 감응특성)

  • 전석택;최우성;백승철
    • Electrical & Electronic Materials
    • /
    • v.9 no.9
    • /
    • pp.925-932
    • /
    • 1996
  • Using the d.c. 2-probe method, we have examined the temperature dependence of CO gas sensitivity of pure ZnO and ZnO CuO thick films prepared by the acqueous precipitation. At 200ppm CO gas, pure ZnO thick film shows the maximum sensitivity of -6.5 at 300.deg. C. On the other hand, the maximum sensitivity of 1-5 mol% and 10-15 mol% CuO added ZnO thick films are 2.8-2.5 and 1.6, respectively. Therefore, the sensitivity of pure ZnO thick film is about three times larger than those of ZnO-CuO thick films. We suggest that the promotion of maximum sensitivity is caused by low packing and the increase of chemical adsorptions for $O_{2}$ gas.

  • PDF

Development of High-Sensitivity Cantilever-Detected ESR Measurement Using a Fiber-Optic Interferometer

  • Tokuda, Yuki;Tsubokura, Daichi;Ohmichi, Eiji;Ohta, Hitoshi
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.173-177
    • /
    • 2013
  • Cantilever-detected high-frequency electron spin resonance (ESR) is a powerful method of sub-terahertz and terahertz ESR spectroscopy for a tiny magnetic sample at low temperature. In this technique, a small magnetization change associated with ESR transition is detected as deflection of a sample-mounted cantilever. So far, we have succeeded in ESR detection at 370 GHz using a commercial piezoresistive microcantilever. The spin sensitivity was estimated to ${\sim}10^{12}$ spins/gauss. In order to further increase the sensitivity, we adopt a fiber-optic-based detection system using a Fabry-Perot interferometer in place of piezoresistive system. Fabry-Perot cavity is formed between an optical-fiber end and microcantilever surface, and a change in the interference signal, corresponding to the cantilever deflection, is sensitively detected. This system is suitable for low-temperature and high-magnetic-field experiments because of its compact setup and less heat dissipation. In this study, performance of Fabry-Perot interferometer is evaluated, and its application to cantilever-detected ESR measurement is described.

Evaluation of Formability Sensitivity to Die Design in Warm Square Cup Deep Drawing of AZ31 Sheet (AZ3l 판재의 온간 사각컵 디프드로잉에서 금형 설계에 대한 성형성 민감도의 평가)

  • Kim, G.D.;Kim, H.K.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.120-125
    • /
    • 2007
  • Magnesium alloy has low formability at room temperature and therefore, in many cases, forming at elevated temperatures is necessary to obtain the required material flow without failure. Tn the present study, square cup deep drawing tests using the magnesium alloy AE31 sheet were experimentally conducted using the porches and dies with different edge radius to evaluate the formability sensitivity to the die design variables. The experimental results showed that the fracture position over the cup wall moved from the punch nose to the flange as the die temperature increased, and that the drawing depth change was more affected by the punch radius than the die radius.

Improvement of Sensitivity in Porous Silicon Alcohol Gas Sensors by UV Light (자외선조사에 의한 다공질 실리콘 알코올 센서의 감도 개선)

  • Kim, Seong-Jin;Choe, Bok-Gil
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.676-680
    • /
    • 1999
  • To do breath alcohol measurement, a sensor is necessary that it can detect low alcohol gas concentration of 0.01% at least. In this work, a capacitance-type alcohol gas sensor using porous silicon layer is developed to measure low alcohol gas concentration. The sensor using porous silicon layer has some sensitivity at room temperature by very large effective surface area, but there is still much room for improvement. In this experiment, we measured the capacitance of the sensor under 254 nm UV light on the porous silicon layer, in which alcohol solution was kept in a flask at 25, 35, and $45^{\circ}C$ by a heater. As the result, the improvement of sensitivity by illuminating UV light was observed. The increasing rate of the capacitance was shown to be double more than those measured under UV-off state. It is supposed that UV light activates response of the oriental and interfacial polarizations which have slow relaxation time for AC field.

  • PDF

Design of Low-Voltage Reference Voltage Generator for NVM IPs (NVM IP용 저전압 기준전압 회로 설계)

  • Kim, Meong-Seok;Jeong, Woo-Young;Park, Heon;Ha, Pan-Bong;Kim, Young-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.375-378
    • /
    • 2013
  • A reference voltage generator which is insensitive to PVT (process-voltage-temperature) variation necessary for NVM memory IPs such as EEPROM and MTP memories is designed in this paper. The designed BGR (bandgap reference voltage) circuit based on MagnaChip's $0.18{\mu}m$ EEPROM process uses a low-voltage bandgap reference voltage generator of cascode current-mirror type with a wide swing and shows a reference voltage characteristic insensitive to PVT variation. The minimum operating voltage is 1.43V and the VREF sensitivity against VDD variation is 0.064mV/V. Also, the VREF sensitivity against temperature variation is $20.5ppm/^{\circ}C$. The VREF voltage has a mean of 1.181V and its three sigma ($3{\sigma}$) value is 71.7mV.

  • PDF

Sensitivity Changes of Auxin Transport System in Maize Coleoptile Segments

  • 윤인선
    • Journal of Plant Biology
    • /
    • v.36 no.1
    • /
    • pp.59-66
    • /
    • 1993
  • In maize coleoptile segments where auxin transport capacity decreases with time following excision, susceptability of the tissue to transport inhibitors such as N-1-naphthylphthalamic acid (NPA), 3,4,5-triiodobenzoic acid (TIBA) or high concentrations of IAA was found to be rather increased. A time-dependent increase in the sensitivity to NPA can be postulated since the dose-response curve for NPA was shifted in the‘aged’tissue to the left (i.e. lower concentration). Preincubation of the tissue at a low temperature abolished the time-dependent sensitivity change, suggesting that cellular metabolism could be involved. The NPA-sensitive state was also brought about by calcium depletion of the tissue, which can be partially reversed by addition of calcium. Presence of exogenous IAA in the preincubation medium kept the auxin transport system from decay, implicating auxin as an endogenous controlling factor. Results of our experiments indicate a reversible, time-dependent changes of auxin transport system in which transport capacity and sensitivity to NPA are tightly coupled. Changes in the sensitivity to NPA were also seen in auxin action as well.

  • PDF

Comparison of Temperature Characteristics Between Single and Poly-crystalline Silicon Pressure Sensor (단결정 및 다결정 실리콘 압력센서의 온도특성 비교)

  • Park, Sung-June;Park, Se-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.342-344
    • /
    • 1995
  • Using piezoresistive effects of single-crystal and poly-crystalline silicon, pressure sensors of the same pattern were fabricated for comparison of temperature characteristics. Optimum size and aspect ratio of rectangular sensor diaphragm were calculated by FEM. For polsilicon pressure sensor, polysilicon resistors of Wheatstone bridge were deposited by LPCVD to be used in a wide' temperature range. Polysilicon pressure sensors showed more stable temperature characteristics than single-crysta1 silicon in the range of $-20\sim125[^{\circ}C]$. To get low TCO (Temperature Coefficient of Offset), below $\pm$3 [${\mu}V/V/^{\circ}C$], it is needed for each TCR of piezoresistors to have a deviation within $\pm25[ppm/^{\circ}C]$ less than $\pm500[ppm/^{\circ}C]$ of resistors for polysilicon pressure sensor can result in low TCS(Temperature Coefficient of Sensitivity) of -0.1[%FS/$^{\circ}C$].

  • PDF

$Co_{3}O_{4}$ butane gas sensor operating at low temperature (I) (저온동작용 $Co_{3}O_{4}$ 부탄가스 감지 소자(I))

  • Chung, Jin-Hwan;Choi, Soon-Don
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.7-14
    • /
    • 1996
  • In order to develop gas sensor operating at low temperature, thick film $Co_{3}O_{4}$ sensor was fabricated. $Co_{3}O_{4}$ powder was prepared by precipitation from cobalt nitrate solution and the powders containing ethylene glycol as a binder was screen-printed on alumina substrate. Characteristics of sensitivity, response time, and recovery were investigated in terms of binder content and heat treating conditions. The $Co_{3}O_{4}$ sensor contained 15% ethylene glycol and heat-treated at $300^{\circ}C$ for 24hr showed the highest sensitivity at the operating temperature of $250^{\circ}C$. Its sensitivity of 1.1 to 5000ppm butane gas was very high, as compared with $0.8{\sim}0.85$ at the operating temperature of $350{\sim}400^{\circ}C$ for a commercial $SnO_{2}$ gas sensor. It is found that response time was fast, but recovery was poor for the sensor.

  • PDF

Experimental Study on Thermal Sensation Evaluation in Heating(part I: Emotion & Sensibility Image Evaluation by Indoor Temperature Change in Heating) (실내 난방시 온열쾌적성 평가에 관한 연구(part I;실내 난방시 실온변화에 따른 감성이미지 평가))

  • 한남규;금종수;김형철;김동규;김창연
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2003.05a
    • /
    • pp.41-46
    • /
    • 2003
  • In recently, Is inhabiting more than 70% indoors during a day in case of company employee and ordinary people which is looking at usual business. Therefore Thermal comfort of human body about indoor temperature and air flow acting very heftily. When intestine temperature is fallen for external low temperature and air flow in winter in case enter into heated room feel comfort by effect of temperature and feel comfort or discomfort by room heating condition gradually. Therefore it is important that grasp thermal comfort about temperature and air flow in heating to keep continuous comfort in indoor dwelling. Temperature and thermal comfort factor of emotion & sensitivity image exert fair effect since heating middle although thermal comfort change greatly effect on sensation about temperature at actuality heating early. Need much study yet in vantage point of emotion & sensitivity although much study were held about thermal and comfort sensibility and when heat in existing research until now. Therefore this study is targeting that evaluate thermal comfort through introduction of estimation method by emotion & sensibility image real and synthetic sensibility about thermal environment that is becoming winter heating.

  • PDF