• Title/Summary/Keyword: Sensitivity derivatives

Search Result 150, Processing Time 0.025 seconds

Synthesis and Photosensitive Characterization of NDAS Derivatives (NDAS 유도체의 합성과 감광특성)

  • Lee, Ki-Chang;Choi, Sung-Yong;Bae, Nam-Kyoung;Yoon, Cheol-Hun;Hwang, Sung-Kwy
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.145-153
    • /
    • 1996
  • Naphthoquinone-1,2-diazide-5-sulfonyl[NDAS] derivatives members of quinone diazide compound that are utilizable as photosensitive polymer material were synthesized, and photoresist were prepared by mixing these derivatives with m-cresol novolak(a matrix resin) at various weight ratios. Photosensitive characteristics of photoresist were studied by examining UV and IR, relative sensitivity using a Gray scale method, and SEM to analyze if they can be used as photosensitive material in printing process. Experimental results showed that, by UV, NDAS derivatives were photoconverted and developer-soluble photoresist were produced. The mixing ratio of 1:4(by mass) of NDAS+p-ydroxybenzophenone+sensitizer and m-cresol novolak gave rise to the highest dissolution rate. In addition, photoresist obtained at this condition resulted in the most superior sensitivity and contrast.

Sensitivity analysis based on complex variables in FEM for linear structures

  • Azqandi, Mojtaba Sheikhi;Hassanzadeh, Mahdi;Arjmand, Mohammad
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.15-32
    • /
    • 2019
  • One of the efficient and useful tools to achieve the optimal design of structures is employing the sensitivity analysis in the finite element model. In the numerical optimization process, often the semi-analytical method is used for estimation of derivatives of the objective function with respect to design variables. Numerical methods for calculation of sensitivities are susceptible to the step size in design parameters perturbation and this is one of the great disadvantages of these methods. This article uses complex variables method to calculate the sensitivity analysis and combine it with discrete sensitivity analysis. Finally, it provides a new method to obtain the sensitivity analysis for linear structures. The use of complex variables method for sensitivity analysis has several advantages compared to other numerical methods. Implementing the finite element to calculate first derivatives of sensitivity using this method has no complexity and only requires the change in finite element meshing in the imaginary axis. This means that the real value of coordinates does not change. Second, this method has the lower dependency on the step size. In this research, the process of sensitivity analysis calculation using a finite element model based on complex variables is explained for linear problems, and some examples that have known analytical solution are solved. Results obtained by using the presented method in comparison with exact solution and also finite difference method indicate the excellent efficiency of the proposed method, and it can predict the sustainable and accurate results with the several different step sizes, despite low dependence on step size.

Histological Subtype of Ovarian Cancer as a Determinant of Sensitivity to Formamidine Derivatives of Doxorubicin - in Vitro Comparative Studies with SKOV-3 and ES-2 Cancer Cell Lines

  • Denel-Bobrowska, M.;Lukawska, M;Oszczapowicz, I;Marczak, A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4223-4231
    • /
    • 2016
  • Background: Development of new apoptosis-inducing drugs is a promising trend in anticancer therapy. For this purpose several formamidinoderivatives of doxorubicin were synthesized. The aim of our study was to investigate effects of the five formamidinodoxorubicins in the ES-2 human ovarian clear cell carcinoma line, for comparison with data obtained previously for SKOV-3 human ovarian adenocarcinoma cells, to answer the question of whether and to what extent the histological cell type is a possible determinant of sensitivity to tested anthracyclines. Materials and Methods: In our experimental work the following methods were used: spectrophotometric assays with MTT; fluorimetric assays - double staining with Hoechst 33258 and propidium iodide (PI), measurement of caspase-3, -8, -9 activity, intracellular accumulation of DOX and analogues, estimation of drug uptake, mitochondrial transmembrane potential; flow cytometry - phosphatidylserine (PS) externalization with annexin V-FITC and PI fluorochromes. Results: Effects of the derivatives of doxorubicin were partially linked with the specific type of cancer cell although intracellular accumulation and cellular uptake of DOX and derivatives were similar in both. All of the investigated derivatives were considerably more cytotoxic than DOX. Formamidinodoxorubicins were able to induce caspase-dependent apoptotic cell death in both cell types. Conclusions: All new formamidine derivatives of DOX were able to induce caspase - dependent apoptosis in human ovarian cancer cell lines SKOV-3 and ES-2. Obtained results suggested that formamidine derivatives of DOX may be promising candidates for the prospective chemotherapeutic agents for the two different histological subtypes of ovarian cancer.

Improved Sensitivity Method for Natural Frequency and Mode Shape of Damped Systems (감쇠 시스템의 고유진동수와 모드의 개선된 만감도 기법)

  • 조홍기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.176-183
    • /
    • 2000
  • A simplified for the eigenpair sensitivities of damped systems is presented. This approach employs a reduced equation to determine the sensitivities of eigenpairs of the damped vibratory systems with distinct eigenvalues. The derivatives of eigenpairs are obtained by solving an algebraic equation with a symmetric coefficient matrix of (n+1) b (n+1) dimension where n is the number of degree of freedom. This is an improved method of the previous work of Lee and Jung. Two equations are used to find eigenvalues derivatives and eigenvector derivatives in their paper. A significant advantage of this approach over Lee and Jung is that one algebraic equation newly developed is enough to compute such eigenvalue derivatives and eigenvector derivatives. Simulation results indicate that the new method is highly efficient in determining the sensitivities of engenpairs of the damped vibratory systems with distrinct eigenvalues.

  • PDF

Analysis of Response of Lumped Mass System Using Sensitivity Method in Frequency Domain (주파수 영역 민감도 방법을 이용한 집중 질량 구조물의 응답 해석)

  • Baek, Moon-Yeol;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.164-169
    • /
    • 1997
  • The aim of this paper is to present some results of sensitivity analysis in frequency domain. The sensitivity fonctions in frequency domain is not depend on the external excitation but depend on the frequency of the system's resonance. The sensitivity functions are determined as function of partial derivatives of system transfer functions taken with respect to system design parameters. The logarithmic sensitivity function is the dimensionless sensitivity funciton available, making it useful to compare the influence of various parameters on system variables. Two degree of fredom system is used to illustrate the procedure for sensitivity analysis proposed in this paper.

  • PDF

ALGEBRAIC METHOD FOR COMPUTATION OF EIGENPAIR SENSITIVITIES OF DAMPED SYSTEMS WITH REPEATED EIGENVALUES (중복근을 갖는 감쇠 시스템의 고유진동수와 모드의 고차 민감도 해석)

  • Choi, Kang-Min;Ji, Han-Rok;Yoon, Woo-Hyun;Lee, In-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.721-726
    • /
    • 2004
  • A simplified method for the computation of first second and higher order derivatives of eigenvalues and eigenvectors derivatives associated with repeated eigenvalues is presented. Adjacent eigenvectors and orthonormal conditions are used to compose an algebraic equation whose order is (n+m)x(n+m), where n is the number of coordinates and m is the number of multiplicity of the repeated eigenvalues. The algebraic equation developed can be used to compute derivatives of both eigenvalues and eigenvectors simultaneously. Since the coefficient matrix in the proposed algebraic equation is non-singular, symmetric and based on N-space it is numerically stable and very efficient compared to previous methods. This method can be consistently applied to structural systems with structural design parameters and mechanical systems with lumped design parameters. To verify the effectiveness of the proposed method, the finite element model of the cantilever beam is considered.

  • PDF

Amperometric Detection of Some Catechol Derivatives and o-aminophenol Derivative with Laccase Immobilized Electrode: Effect of Substrate Structure

  • Quan De;Shin Woonsup
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.83-88
    • /
    • 2004
  • [ $DeniLite^{TM}$ ] laccase immobilized Pt electrode was used for amperometric detection of some catechol derivatives and o-aminophenol (OAP) derivative by means of substrate recycling. In case of catechol derivatives, the obtained sensitivities are 85, 79 and $57 nA/{\mu}M$ with linear ranges of $0.6\~30,\;0.6\~30\;and\; 1\~25 {\mu}M$ and detection limits (S/N=3) of 0.2, 0.2 and $0.3{\mu}M$ for 3,4-dihydroxycinnaminic acid (3,4-DHCA), 3,4-dihydroxybenzoic acid (3,4-DHBA) and 3,4-dihydroxyphenylacetic acid (3,4-DHPAA), respectively. In case of OAP derivative, the obtained sensitivity is $237 nA/{\mu}M$ with linear range of $0.2\~15{\mu}M$ and detection limit of 70 nM for 2-amino-4-chlorophenol (2-A-4-CP). The response time $(t_{90\%})$ is about 2 seconds for each substrate and the long-term stability is around 40-50days for catechol derivatives and 30 days for 2-A-4-CP with retaining $80\%$ of initial activity. The optimal pHs of the sensor for these substrates are in the range of 4.5-5.0, which indicates that stability of the enzymatically oxidized product plays a very important role in substrate recycling. The different sensitivity of the sensor for each substrate can be explained by the electronic effect of the sugstituent on the enzymatically oxidized form.

Synthesis of New 4-(tert-Octyl)phenol Derivatives and Their Anticancer Activity against Human Prostate and Lung Cancer Cell Lines

  • Che, Haiyan;Fang, Yuanying;Gurung, Santosh K.;Luo, Jun;Yoon, Deok Hyo;Sung, Gi-Ho;Kim, Tae Woong;Park, Haeil
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2038-2042
    • /
    • 2014
  • 4-(tert-Octyl)phenol derivatives bearing the D-mannitol substructure (6a, 6b, 7) were prepared from $\small{D}$-mannitol and evaluated their anticancer activity against human lung (A549) and prostate (Lncap, Du145, PC3) cancer cell lines. Among derivatives tested, the bis(tert-octyl)phenoxy compound 7 exhibited strongest proliferation inhibitory activities against human cancer cell lines tested, especially high sensitivity to human Du145 prostate cancer cells ($IC_{50}=7.3{\mu}M$).

Two dimensional analysis between the performance and the sensitivity of methylnitroimidazole derivatives (메틸나이트로이미다졸 유도체의 성능-감도 이차원적 분석)

  • Rim, One Kwon
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.430-435
    • /
    • 2015
  • Two-dimensional analysis between the explosive performance and the impact sensitivity for methylnitroimidazole derivatives was performed to understand where these new energetic molecules could be utilized. The explosive performance was analyzed with the Cheetah program, while the impact sensitivity was predicted using neural network analysis. Successive nitration of methylimidazole made the molecule more sensitive, but methyltrinitroimidzole appeared to have a relatively good safety characteristic. We recently developed a novel method to analyze the potential usage of new energetic molecules using a two-dimensional chart, where the explosive performance and the impact sensitivity were located on the X-axis and Y-axis, respectively. An analysis of a two-dimensional plot between the performance and the sensitivity indicated that methyldinitroimidazole would be useful for insensitive explosive formulations, while methyltrinitroimidazole was forecasted for use as an ingredient for high explosive formulations.

Comparison of isoBOC derivatives, TBDMS derivatives, with US EPA Method in the sensitivity of Alkylphenols, Chlorophenols, and Bisphenol A potential field-screening applications of GC/MS-SIM

  • Kim, Hyub;Hong, Jong-Ki;Kim, Yong-Hwa;Kim, Kyoung-Rae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.235.2-236
    • /
    • 2002
  • The alkylphenols, chlorophenols and bisphenol A were determined by gas chromatography/mass spectrometry-selected ion monitoring mode followed by three work-up methods for comparison: EPA method, isoBOC derivatization method and TBDMS derivatization method. Eleven phenols in water samples were extracted with dichloromethane. (omitted)

  • PDF