• 제목/요약/키워드: Sensitivity derivative

검색결과 140건 처리시간 0.021초

열응력, 내력 및 균열 경계하중을 고려한 2차원 균열문제의 에너지방출율 (The Energy Release Rate of the Two Dimensional Cracked Body Under Thermal Stresses, Body Forces and Crack-Face Tractions)

  • 이태원
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2172-2180
    • /
    • 1993
  • Under general loadings, including body forces, crack-face tractions and thermal loading, the energy release rate equation for a two-dimensional cracked body is presented. Defining the virtual crack extension as the variation of the geometry, the equation is directly derived by a shape design sensitivity of the potential energy. Although the form of the derived energy release rate equation is different from other researchers's results, the three example show that the former is exactly the same as the latter. However, the final integral equation do not involve the derivative of the displacement on the crack surface and crack tip region, thereby improving the numerical accuracy in the computation of the energy relase rate. Moreover, as it was derived from the governing equation including non-linear elasticity without special assumptions, the energy release rate of a elasto-plastic fracture can be obtained and any numerical stress analysis method can be applied.

Amperometric Detection of Some Catechol Derivatives and o-aminophenol Derivative with Laccase Immobilized Electrode: Effect of Substrate Structure

  • Quan De;Shin Woonsup
    • 전기화학회지
    • /
    • 제7권2호
    • /
    • pp.83-88
    • /
    • 2004
  • [ $DeniLite^{TM}$ ] laccase immobilized Pt electrode was used for amperometric detection of some catechol derivatives and o-aminophenol (OAP) derivative by means of substrate recycling. In case of catechol derivatives, the obtained sensitivities are 85, 79 and $57 nA/{\mu}M$ with linear ranges of $0.6\~30,\;0.6\~30\;and\; 1\~25 {\mu}M$ and detection limits (S/N=3) of 0.2, 0.2 and $0.3{\mu}M$ for 3,4-dihydroxycinnaminic acid (3,4-DHCA), 3,4-dihydroxybenzoic acid (3,4-DHBA) and 3,4-dihydroxyphenylacetic acid (3,4-DHPAA), respectively. In case of OAP derivative, the obtained sensitivity is $237 nA/{\mu}M$ with linear range of $0.2\~15{\mu}M$ and detection limit of 70 nM for 2-amino-4-chlorophenol (2-A-4-CP). The response time $(t_{90\%})$ is about 2 seconds for each substrate and the long-term stability is around 40-50days for catechol derivatives and 30 days for 2-A-4-CP with retaining $80\%$ of initial activity. The optimal pHs of the sensor for these substrates are in the range of 4.5-5.0, which indicates that stability of the enzymatically oxidized product plays a very important role in substrate recycling. The different sensitivity of the sensor for each substrate can be explained by the electronic effect of the sugstituent on the enzymatically oxidized form.

Chemical Derivatization of Catecholamines for Gas Chromatography-Mass Spectrometry

  • Park, Sun-Young;Kang, Bo-Xin;Li, Quing;Kim, Hoon-Sik;Lee, Jun-Gae;Hong, Jong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권7호
    • /
    • pp.1497-1504
    • /
    • 2009
  • GC/MS analysis of catecholamines (CAs) in biological sample may produce poor reproducible quantitaion when chemical derivatization is used as the technique to form a volatile derivative. Significant quantities of the side products can be formed from CAs with primary amine during the derivatization reaction under un-optimized conditions. We have tested various chemical derivatization techniques in an attempt to find an optimum derivatization method that will reduce side product formation, enable to separate several catecholamine derivatives in GC chromatogram, and obtain significant improvement of detection sensitivity in GC/MS analysis. Whereas several derivatization techniques such as trimethylsilylation (TMS), trifluoroacylation (TFA), and two step derivatization methods were active, selective derivatization to form O-TMS, N-heptafluorobutylacyl (HFBA) derivative using N-methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA) and N-methyl-bis(heptafluorobutyramide) (MBHFBA) reagents was found to be the most effective method. Moreover, this derivative formed by selective derivatization could provide sufficient sensitivity and peak separation as well as produce higher mass ion as base peak to use selected ion in SIM mode. Calibration curves based on the use of an isotopically labeled internal standard show good linearity over the range assayed, 1 ~ 5000 ng/mL, with correlation coefficients of > 0.996. The detection limits of the method ranged from 0.2 to 5.0 ppb for the different CAs studied. The developed method will be applied to the analysis of various CAs in biological sample, combined with appropriate sample pretreatment.

축대칭 쉘구조물의 형상 설계민감도 해석 및 최적설계 (Shape Design Sensitivity Analysis and Optimization of Axisymmetric Shell Structures)

  • 김인용;곽병만
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.98-105
    • /
    • 1993
  • A method for shape design sensitivity analysis for axisymmetric shells of general shapes is developed. The basic approach is to divide the structures into many segments. For each of the segments, the formula for a shallow arch or shell can be applied and the results assembled. To interconnect those segments, the existing sensitivity formula, obtained for a variation only in the direction perpendicular to the plane on which the structure is mapped, has been extended to include a variation normal to the middle surface. The method follows the adjoint variable approach based on the material derivative concept as established in the literature. Numerical examples are taken to illustrate the method and the applicability to practical design problems.

  • PDF

유한요소법을 이용한 HIPing 공정에서의 컨테이너 형상 최적설계 (Optimal Shape Design of Container in HIPing Process by the Finite Element Method)

  • 전경달
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.257-260
    • /
    • 1999
  • It is very important to design the shape of container in HIPing process since the final shape and relative density distribution of the product are decisively dependent on the shape of container. A derivative based approach to determine the shape of container in HIPing process is presented. In this approach the optimal design problem is formulated on the basis of the finite element process. The process model the formulation for process optimal design and the schemes for the evaluation of the design sensitivity and an iterative procedure for optimization are described. In comparison with finite difference scheme the validity of the schemes for the evaluation of the design sensitivity is examined.

  • PDF

연속법에 의한 설계민감도를 이용한 판구조물의 조화진동저감 (The Reduction of Harmonic Dynamic Response of Plate Structure Using Continuum Design Sensitivity Analysis)

  • 이재환;이광한
    • 소음진동
    • /
    • 제6권1호
    • /
    • pp.27-34
    • /
    • 1996
  • In this paper, design sensitivity of vibration displacement and acceleration is computed and design sensitivity, the derivative information of responses with respect to design perameters, is used as a design guidance tool to reduce the vibration. First, the harmonic vibration analysis of deck and simplified ship structures is performed by finite element method and secondly continuum disign sensityivity for excessive dynamic response is computed by continuum method. Both the direct and modal frequency response methods for the finite element analysis are adopted. Sensitivities of structural components such as upper plate, side wall, bilge, bottom plate are compared and the reductionof vibration is obtained by the proper increase of thickness of each component.

  • PDF

유한요소 구조 인자의 2차 민감도에 의한 동적 구조 최적화 (Structural Dynamics Optimization by Second Order Sensitivity with respect to Finite Element Parameter)

  • 김용연
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.8-16
    • /
    • 2006
  • This paper discusses design sensitivity analysis and its application to a structural dynamics modification. Eigenvalue derivatives are determined with respect to the element parameters, which include intrinsic property parameters such as Young's modulus, density of the material, diameter of a beam element, thickness of a plate element, and shape parameters. Derivatives of stiffness and mass matrices are directly calculated by derivatives of element matrices. The first and the second order derivatives of the eigenvalues are then mathematically derived from a dynamic equation of motion of FEM model. The calculation of the second order eigenvalue derivative requires the sensitivity of its corresponding eigenvector, which are developed by Nelson's direct approach. The modified eigenvalue of the structure is then evaluated by the Taylor series expansion with the first and the second derivatives of eigenvalue. Numerical examples for simple beam and plate are presented. First, eigenvalues of the structural system are numerically calculated. Second, the sensitivities of eigenvalues are then evaluated with respect to the element intrinsic parameters. The most effective parameter is determined by comparing sensitivities. Finally, we predict the modified eigenvalue by Taylor series expansion with the derivatives of eigenvalue for single parameter or multi parameters. The examples illustrate the effectiveness of the eigenvalue sensitivity analysis for the optimization of the structures.

확장 B-스플라인 기저함수를 이용한 레벨셋 기반의 형상 최적설계 (Level Set based Shape Optimization Using Extended B-spline Bases)

  • 김민근;조선호
    • 한국전산구조공학회논문집
    • /
    • 제21권3호
    • /
    • pp.239-245
    • /
    • 2008
  • 확장 B-스플라인 기저함수(extended B-spline basis functions)을 이용한 레벨셋 기반의 위상 형상 최적설계 기법을 정상 상태의 열전도 문제에 대하여 개발하였다. 본 해석법은 레벨셋으로 결정된 영역 안쪽만 고려하여 해석을 수행하게 되므로 열전달 문제에서 생길 수 있는 영역 바깥부분 영향을 제거할 수 있다. 설계민감도 해석으로부터 결정되는 법선속도를 활용하여 헤밀턴-자코비 방정식의 해를 구하게 되며, 주어진 체적조건 하에서 열 컴플라이언스(thermal compliance)가 최소가 되는 방향으로 최적의 형상을 결정할 수 있다. 형상 설계민감도를 정확하게 얻기 위해서는 레벨셋 함수와 B-스플라인 함수를 이용하여 수직 단위 벡터와 형상의 곡률을 정확히 결정하며, 위상 설계민감도를 통해 최적화과정 동안 필요한 위치와 시점에서 위상의 변화를 주는 홀을 쉽게 생성할 수 있다.

근궤적과 수동 조정에 의한 직접 구동형 서보밸브의 PID 제어기 및 미분피드백 이득 설계 (PID Controller and Derivative-feedback Gain Design of the Direct-drive Servo Valve Using the Root Locus and Manual Tuning)

  • 이성래
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권3호
    • /
    • pp.15-23
    • /
    • 2016
  • The direct-drive servo valve(DDV) is a kind of one-stage valve because the main spool valve is directly driven by the dc motor. Since the DDV structure is simple, it is less expensive, more reliable, and offers a reduced internal leakage and a reduced sensitivity to fluid contamination. The control system of the DDV is highly nonlinear due to a current limiter, a voltage limiter, and the flow-force effect on the spool motion. The shape of the step response of the DDV-control system varies considerably according to the magnitudes of the step input and the load pressure. The system-design requirements mean that the overshoots should be less than 20%, and the errors at 0.02s should be less than 2%, regardless of the reference-step input sizes of 1V and 5V and the load-pressure magnitudes of 0MPa and 20.7MPa. To satisfy the system-design requirements, the PID-controller parameters of $K_c$, $T_i$ and $T_d$, and the derivative-feedback gain of $K_{der}$ are designed using the root locus and manual tuning.

Locating cracks in RC structures using mode shape-based indices and proposed modifications

  • Fayyadh, Moatasem M.;Razak, Hashim Abdul
    • Advances in Computational Design
    • /
    • 제7권1호
    • /
    • pp.81-98
    • /
    • 2022
  • This study presents the application of two indices for the locating of cracks in Reinforced Concrete (RC) structures, as well as the development of their modified forms to overcome limitations. The first index is based on mode shape curvature and the second index is based on the fourth derivative of the mode shape. In order to confirm the indices' effectiveness, both eigenvalues coupled with nonlinear static analyses were carried out and the eigenvectors for two different damage locations and intensities of load were obtained from the finite element model of RC beams. The values of the damage-locating indices derived using both indices were then compared. Generally, the mode shape curvature-based index suffered from insensitivity when attempting to detect the damage location; this also applied to the mode shape fourth derivative-based index at lower modes. However, at higher modes, the mode shape fourth derivative-based index gave an acceptable indication of the damage location. Both the indices showed inconsistencies and anomalies at the supports. This study proposed modification to both indices to overcome identified flaws. The results proved that modified forms exhibited better sensitivity for identifying the damage location. In addition, anomalies at the supports were eliminated.