• 제목/요약/키워드: Sensitivity analysis method

검색결과 2,654건 처리시간 0.038초

TCSC의 주기적 스위칭 동작에 의한 진동모드의 감도해석 (Sensitivity analysis of oscillation modes occurred by periodic switching operations of TCSC)

  • 김덕영;동무환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.644-645
    • /
    • 2007
  • In this paper, the eigenvalue sensitivity analysis algorithm in discrete systems by the RCF method are presented and applied to the power system including TCSC. The RCF analysis method enabled to precisely calculate eigenvalue sensitivity coefficients of dominant oscillation modes after periodic switching operations. These simulation results are very different from those of the conventional continuous system analysis method such as the state space equation method

  • PDF

사면 안정해석에 적용되는 지반강도정수($C, _{\Phi}$)와 사면경사 민감도 분석 (Sensitivity Analysis of Shear Strength Parameters($C, _{\Phi}$)and Slope Angel in Slope Stability Analysis)

  • 백용;배규진;권오일;장수호;구호본
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.179-184
    • /
    • 2005
  • Shear strength parameters obtained from filed survey are important factors in the analysis of slope stability. In this study, sensitivity analysis was performed to evaluate the effect of input parameters on the analysis of slope stability. The input parameters selected for sensitivity analysis were slope angle, cohesion, and friction angle. Monte-Carlo Simulation method was used for calculating input parameters and the factor of safety was computed by means of limit equilibrium method. A rock slope, which has failed in the field, was used for the sensitivity analysis in the analysis of slope stability. The result of analysis shows that the factor of safety of the rock slope was a little low. From partial correlation coefficient(PPC) of input parameters determined from the sensitivity analysis, slope stability was dependant on cohesion and slope angle. The effect of friction angle was lower than that of cohesion and slope angle on slope stability.

  • PDF

Design Sensitivity Analysis of Coupled Thermo-elasticity Problems

  • Choi Jae-yeon;Cho Seonho
    • Journal of Ship and Ocean Technology
    • /
    • 제8권3호
    • /
    • pp.50-60
    • /
    • 2004
  • In this paper, a continuum-based design sensitivity analysis (DSA) method is developed for the weakly coupled thermo-elasticity problems. The temperature and displacement fields are described in a common domain. Boundary value problems such as an equilibrium equation and a heat conduction equation in steady state are considered. The direct differentiation method of continuum-based DSA is employed to enhance the efficiency and accuracy of sensitivity computation. We derive design sensitivity expressions with respect to thermal conductivity in heat conduction problem and Young's modulus in equilibrium equation. The sensitivities are evaluated using the finite element method. The obtained analytical sensitivities are compared with the finite differencing to yield very accurate results. Extensive developments of this method are useful and applicable for the optimal design problems incorporating welding and thermal deformation problems.

다물체계의 평형위치에서 고유진동수에 대한 공차해석 (Tolerance Analysis for Natural Frequencies of Multi-body Systems in Dynamic Equilibrium State)

  • 엄승만;최동환;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.95-100
    • /
    • 2006
  • Tolerance analysis method for natural frequencies of multi-body systems having a equilibrium position is suggested in this paper. To perform the tolerance analysis, the Monte-Carlo Method is conventionally employed. However, the Monte-Carlo Method has some weakness; spending too much time for analysis and having a low accuracy and hard to converge in the numerical unstable area. To resolve these problems, a tolerance analysis method is suggested in this paper. Sensitivity equations of natural frequencies are derived at the equilibrium position. By employing the sensitivity information of mass, damping and stiffness matrices, the sensitivity of natural frequencies can be calculated.

  • PDF

다물체계의 평형위치에서 고유진동수에 대한 공차해석 (Tolerance Analysis for Natural Frequencies of Multi-body Systems in Dynamic Equilibrium State)

  • 엄승만;최동환;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제17권1호
    • /
    • pp.65-71
    • /
    • 2007
  • Tolerance analysis method for natural frequencies of multi-body systems having a equilibrium position is suggested in this paper. To perform the tolerance analysis, the Monte-Carlo Method is conventionally employed. However, the Monte-Carlo Method has some weakness; spending too much time for analysis and having a low accuracy and hard to converge in the dynamical unstable area. To resolve these problems, a tolerance analysis method is suggested in this paper. Sensitivity equations of natural frequencies are derived at the equilibrium position. By employing the sensitivity information of mass, damping and stiffness matrices, the sensitivity of natural frequencies can be calculated.

A New Sensitivity-Based Reliability Calculation Algorithm in the Optimal Design of Electromagnetic Devices

  • Ren, Ziyan;Zhang, Dianhai;Koh, Chang Seop
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.331-338
    • /
    • 2013
  • A new reliability calculation method is proposed based on design sensitivity analysis by the finite element method for nonlinear performance constraints in the optimal design of electromagnetic devices. In the proposed method, the reliability of a given design is calculated by using the Monte Carlo simulation (MCS) method after approximating a constraint function to a linear one in the confidence interval with the help of its sensitivity information. The validity and numerical efficiency of the proposed sensitivity-assisted MCS method are investigated by comparing its numerical results with those obtained by using the conventional MCS method and the first-order reliability method for analytic functions and the TEAM Workshop Problem 22.

레이저 표면 경화처리 긍정변수의 민감도 해석에 관한 연구 (A study on the sensitivity analysis of processing parameters for the laser surface hardening treatment)

  • 이세환;양영수
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2000년도 특별강연 및 추계학술발표대회 개요집
    • /
    • pp.260-263
    • /
    • 2000
  • A methodology is developed and many used to evaluate the response sensitivity of the thermal systems to variations in their design parameters. Technique for computing the sensitivity of temperature distributions to changes in processing parameters needed for deciding the more effective laser input parameters for laser surface hardening treatment are considered. In this study, a state equation governing the heat flow in laser surface treatment is analyzed using a three-dimensional finite element method and sensitivity data of the processing parameter obtained using a direct differentiation method applied for sensitivity analysis. The interesting processing parameter is taken as the laser scan velocity and characteristic beam radius( $r_{b}$) of the sensitivity of the temperature T versus v and $r_{b}$ is analyzed. And these sensitivity results obtained in another parameters are fixed condition. To verifying the numerical analysis results, hardened layer dimensions (width and depth) of the numerical analysis compared with the results of an experimental data.ata.

  • PDF

직접미분법을 이용한 현가장치의 기구학적 민감도해석 (Kinematic Design Sensitivity Analysis of Suspension systems Using Direct differentiation)

  • 민현기;탁태오;이장무
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.38-48
    • /
    • 1997
  • A method for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. For modeling of vehicle suspensions, the multibody dynamic formulation is adopted, where suspensions are assumed as combination of rigid bodies and ideal frictionless joints. In a relative joint coordinate setting, kinematic constraint equations are obtained by imposing cut-joints that transform closed-loop shape suspension systems into open-loop systems. By directly differentiating the constraint equations with respect to kinematic design variables, such as length of bodies, notion axis, etc., sensitivity equations are derived. By solving the sensitivity equations, sensitivity of static design factors that can be used for design improvement, can be obtained. The validity and usefulness of the method are demonstrated through an example where kinematic sensitivity analysis of a MacPherson strut suspension of performed.

  • PDF

Shape Design Sensitivity Analysis for Interface Problem in Axisymmetric Elasticity

  • Choi, Joo-Ho;Lee, Boo-Youn;Han, Jung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.197-206
    • /
    • 2000
  • A boundary integral equation method in the shape design sensitivity analysis is developed for the elasticity problems with axisymmetric non-homogeneous bodies. Functionals involving displacements and tractions at the zonal interface are considered. Sensitivity formula in terms of the interface shape variation is then derived by taking derivative of the boundary integral identity. Adjoint problem is defined such that displacement and traction discontinuity is imposed at the interface. Analytic example for a compound cylinder is taken to show the validity of the derived sensitivity formula. In the numerical implementation, solutions at the interface for the primal and adjoint system are used for the sensitivity. While the BEM is a natural tool for the solution, more generalization should be made since it should handle the jump conditions at the interface. Accuracy of the sensitivity is evaluated numerically by the same compound cylinder problem. The endosseous implant-bone interface problem is considered next as a practical application, in which the stress value is of great importance for successful osseointegration at the interface. As a preliminary step, a simple model with tapered cylinder is considered in this paper. Numerical accuracy is shown to be excellent which promises that the method can be used as an efficient and reliable tool in the optimization procedure for the implant design. Though only the axisymmetric problem is considered here, the method can be applied to general elasticity problems having interface.

  • PDF

백터합성법에 의한 2마운트계 설계 (Design of Two Mount Systems by Vector Synthesis Method)

  • 차현주;이시복;이상훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.491-495
    • /
    • 1997
  • In this paper, an effective mount design method using vector synthesis is presented for two mount systems. For designing mount stiffnesses effectively, we perform a sensitivity analysis, i.e, identify the contribution rate of an input component vector to the total output vector. Especially, we show that it is necessary to takea phase sensitivity into consideration in case of two mount systems, such as the excavator mount systems having engine mounts and cabin mounts. THe proposed method is testified is testified through an test bed.

  • PDF