• Title/Summary/Keyword: Sensitivity analyses

Search Result 820, Processing Time 0.027 seconds

Formulations of Sensitivity Analyses for Topological Optimum Modelings (위상학적 최적구조 모델링을 위한 민감도해석의 공식화)

  • Lee, Dong-Kyu;Shin, Soo-Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.241-248
    • /
    • 2008
  • The objective of sensitivity analyses is to identify critical variables of structural models and how their variability impacts mechanical response results. The sensitivity analyses have been used as significant basis data for practical applications of measuring and reinforcing fragile building structures. This study presents several sensitivity analysis methods for topological optimum designs of linear elastostatic structural systems. Numerical examples for structural analyses and topological optimum modeling demonstrate the reliability of sensitivities formulated in the present study.

SENSITIVITY ANALYSIS ABOUT THE METHODS OF UTILIZING THE HIGH RESOLUTION CLIMATE MODEL SIMULATION FOR KOREAN WATER RESOURCES PLANNING (II) : NUMERICAL EXPERIMENTS

  • Jeong, Chang-Sam;Hwang, Man-Ha;Ko, Ick-Hwan;Heo, Jun-Haeng;Bae, Deg-Hyo
    • Water Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.73-89
    • /
    • 2005
  • Two kinds of high resolution GCMs with the same spatial resolutions but with different schemes run by domestic and foreign agencies are used to clarify the usefulness and sensitivity of GCM for water resources applications for Korea. One is AMIP-II (Atmospheric Model Intercomparison Project-II) type GCM simulation results done by ECMWF (European Centre for Medium-Range Weather Forecasts) and the other one is AMIP-I type GCM simulation results done by METRI (Korean Meteorological Research Institute). Observed mean areal precipitation, temperature, and discharge values on 7 major river basins were used for target variables. Monte Carlo simulation was used to establish the significance of the estimator values. Sensitivity analyses were done in accordance with the proposed ways. Through the various tests, discrimination condition is sensitive for the distribution of the data. Window size is sensitive for the data variation and the area of the basins. Discrimination abilities of each nodal value affects on the correct association. In addition to theses sensitivity analyses results, we also noticed some characteristics of each GCM. For Korean water resources, monthly and small window setting analyses are recommended using GCMs.

  • PDF

The Parametric Sensitivity Analyses of linear System Relative to the Characteristic Ratios of Coefficient(II) : K-Polynomial Case (계수의 특성비에 대한 선형계의 파라미터적 감도해석(II) : K-다항식의 경우)

  • 김영철;김근식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.295-303
    • /
    • 2004
  • Previously it has been shown that the all pole systems resulting good time responses can be characterized by so called K-polynomial. The polynomial is defined in terms of the principal characteristic ratio $\alpha_1$ and the generalized time constant $\tau$ . In this paper, Part II presents several sensitivity analyses of such systems with respect to $\alpha_1$ and $\tau$ changes. We first deal with the root sensitivity to the perturbation of $\alpha_1$ . By way of determining the unnormalized function sensitivity, both time response sensitivity and frequency response sensitivity are derived. Finally, the root sensitivity relative to $\tau$ change is also analyzed. These results provide some useful insight and background theory when we select of and l to compose a reference model of which denominator is a K-polynomial, which is illustrated by examples.

DESIGN-ORIENTED AERODYNAMIC ANALYSES OF HELICOPTER ROTOR IN HOVER (정지비행 헬리콥터 로터의 설계를 위한 공력해석)

  • Jung H.J.;Kim T.S.;Son C.H.;Joh C.Y.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.1-7
    • /
    • 2006
  • Euler and Navier-Stokes flow analyses for helicopter rotor in hover were performed as low and high fidelity analysis models respectively for the future multidisciplinary design optimization(MDO). These design-oriented analyses possess several attributes such as variable complexity, sensitivity-computation capability and modularity which analysis models involved in MDO are recommended to provide with. To realize PC-based analyses for both fidelity models, reduction of flow domain was made by appling farfield boundary condition based on 3-dimensional point sink with simple momentum theory and also periodic boundary condition in the azimuthal direction. Correlations of thrust, torque and their sensitivities between low and high complexity models were tried to evaluate the applicability of these analysis models in MDO process. It was found that the low-fidelity Euler analysis model predicted inaccurate sensitivity derivatives at relatively high angle of attack.

Sensitivity Analyses of Finite Element Method for Estimating Residual Stress of Dissimilar Metal Multi-Pass Weldment in Nuclear Power Plant (원전 이종 금속 다층 용접부 잔류응력 예측을 위한 유한요소 변수 민감도 해석)

  • Song, Tae-Kwang;Bae, Hong-Yeol;Kim, Yun-Jae;Lee, Kyoung-Soo;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.770-781
    • /
    • 2008
  • In nuclear power plants, ferritic low alloy steel components were connected with austenitic stainless steel piping system through alloy 82/182 butt weld. There have been incidents recently where cracking has been observed in the dissimilar metal weld. Alloy 82/182 is susceptible to primary water stress corrosion cracking. Weld-induced residual stress is main factor for crack growth. Therefore exact estimation of residual stress is important for reliable operating. This paper presents residual stress computation performed by 6" safety & relief nozzle. Based on 2 dimensional and 3 dimensional finite element analyses, effect of welding variables on residual stress variation is estimated for sensitivity analysis.

Sensitivity Analyses for Failure Probabilities of the OPR1000 Reactor Vessel Under Pressurized Thermal Shock (가압열충격에 의한 OPR1000 원자로용기의 파손확률 민감도 해석)

  • Oh, Changsik;Jhung, Myung Jo;Choi, Youngin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.40-49
    • /
    • 2019
  • In this paper, failure probabilities of the OPR1000 reactor vessel under pressurized thermal shock (PTS) were estimated using the probabilistic fracture mechanics code, R-PIE. Input variables of initial crack distribution, crack size, copper contents, and upper shelf toughness were selected for the sensitivity analyses. A wide range of the input data were considered. Through-wall cracking frequencies determined by the product of the vessel failure probability and the corresponding occurrence frequency of the transient were also compared to the acceptance criterion. The results showed that transient history had the most significant impact on the vessel failure probability. Moreover, conservative assumptions resulted in extremely high through-wall cracking frequencies.

Stochastic Imperfection Sensitivity Analyses of Stiffened Cylindrical Shells with Geometric Random Imperfection (불확정적인 초기형상결함을 갖는 보강 원통형 쉘의 확률론적 초기결함 민감도해석)

  • D.K. Kim;Y.S. Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.142-154
    • /
    • 1994
  • In this paper, stochastic imperfection sensitivity analyses of stiffened cylindrical shells under static load are presented. Multimode formulation is performed for the buckling load calculation based on the Donnell's theory and Galerkin approximation. Random imperfection field theory and response surface method are combined with deterministic bucking analysis scheme to perform stochastic imperfection sensitivity analyses of stiffened cylindrical shells considering random geometric imperfection. From the characteristics of probabilistic bucking load, the relation between reliability index and safety parameter can be obtained in addition to the relation between load and reliability index. Those results can be used to determine the range of required safety parameter and acceptable imperfection.

  • PDF

Sensitivity Analysis on the Seismic Responses of the Reactor Structures (원자로구조물의 지진응답 민감도해석)

  • Lee, J. H.;Kim, J. B.;Koo, G. H.;Kim, J. I.;Yoo, B.;Choi, S.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.183-190
    • /
    • 1993
  • The seismic response of the reactor structures depends on the dynamic charact-eristics of the structures and the input earthquake loadings. The stuctural integ-rity of the reactor internal components can be verified by the dynamic response analyses to implement the effects of the design loadings like earthquakes. The sensitivity analyses of the dynamic characteristics for the analytical model of reactor structures considering the possible variations of the stiffnesses of the CSB upper flange and the snubber were performed to improve the dynamic characteri-stics of the structures against seismic loading. And to enhance the structural design margin of the reactor internal components the nonlinear time history analyses were attempted for the modified analytical model, and the results were compared between the reference model and the modified ones.

  • PDF

Preliminary analyses on decontamination factors during pool scrubbing with bubble size distributions obtained from EPRI experiments

  • Lee, Yoonhee;Cho, Yong Jin;Ryu, Inchul
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.509-521
    • /
    • 2021
  • In this paper, from a review of the size distribution of the bubbles during pool scrubbing obtained from experiments by EPRI, we apply the bubble size distributions to analyses on the decontamination factors of pool scrubbing via I-COSTA (In-Containment Source Term Analysis). We perform sensitivity studies of the bubble size on the various mechanisms of deposition of aerosol particles in pool scrubbing. We also perform sensitivity studies on the size distributions of the bubbles depending on the diameters at the nozzle exit, the molecular weights of non-condensable gases in the carrier gases, and the steam fractions of the carrier gases. We then perform analyses of LACE-ESPANA experiments and compare the numerical ~ results to those from SPARC-90 and experimental results in order to show the effect of the bubble size distributions.