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Abstract

In this paper, stochastic imperfection sensitivity analyses of stiffened cylindrical shells under
static load are presented. Multimode formulation is performed for the buckling load calculation
based on the Donnell s theory and Galerkin approximation. Random imperfection field theory and
response surface method are combined with deterministic buckling analysis scheme to perform s~
tochastic imperfection sensitivity analyses of stiffened cylindrical shells considering random geo-
metric imperfection. From the characteristics of probabilistic buckling load, the relation between
reliability index and safety parameter can be obtained in addition to the relation between load and
reliability index. Those results can be used to determine the range of required safety parameter
and acceptable imperfection.
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1. Introduction

With the recent advances in offshore, aeros-
pace and nuclear industry, rational structural
design of shell structures based on more accu-
rate strength prediction is required. Shell struc-
tures are good for the efficient increase of stiff-
ness enabling lightweight structural design but
are vulnerable to buckling failure. Cylindrical
shells are used as the main structural compo-
nents of offshore structures, airplanes and nu-
clear reactors. Initial postbuckling behavior of
cylindrical shells is unstable under axial com-
pressive loading and nonlinear coupling between
buckling modes is dominant, so they become
very seunsitive to geometric initial imperfection.
Much imperfection sensitivity studies from the
deterministic viewpoint have been carried out to
analyse the buckling strength reduction due to
geometric imperfection. But in real shells, geo-
metric imperfection shows random properties
which cannot be described from the determinis-
tic viewpoint. Therefore a stochastic approach is
requisite to take into consideration of random-
ness of geometric imperfection rationally.

Since Bolotin[1], many researches have been
performed to get more rational and practical
strength prediction results by combining the im-
perfection sensitivity theory and probabilistic
theory about geometric initial imperfection. First
study about stochastic imperfection sensitivity
of cylindrical shells was performed by Amazigo
[2]. Since then Hansen[3], Fersht[4] treated gen-
eral asymmetric random imperfection and others
[5-7] performed buckling reliability studies of
cylindrical shells.

Nowadays probabilistic finite element method
appears powerful tool for structural reliability
analysis[8], but stochastic imperfection sensitivi-
ty of shells has hardly been performed until now
by the method. Many studies about stochastic
imperfection sensitivity has been mainly con-
fined on unstiffened cylindrical shell and applied
on stiffened shell very recently. Recent re-
searchers has done stochastic imperfection sen-
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sitivity studies on stiffened shell by combining
deterministic stability analysis methodology and
reliability analysis technique, which was mainly
Monte Carlo simulation method and Mean value
first order second moment method(MVFOSM).

Monte Carlo simulation method is good for
the exact reliability analysis but costs too much
time for reliability calculation. MVFOSM is sim-
ple to apply but has weakness that failure prob-
ability changes according to the form of limit s-
tate equation.

In the reliability analysis of highly nonlinear
problem, such as shell buckling with multimode
geometric imperfection where the limit state e-
quation is implicit and solution is sought itera-
tively per incremental loading, advanced first
order second moment(AFOSM) is useful but dif-
fucult to apply directly due to truncation error
cumulation in the process of calculating the
derivatives of random variables. In this paper to
overcome these difficulies, response surface
method, which is used in experiment design of
statistics, is combined with the deterministic
analysis algorithm based on Donnell s theory to
perform stochastic imperfection sensitivity anal-
yses of stiffened cylindrical shell under axial
compressive load.

2. Deterministic Multimode for mulation
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Fig.1 Coordinate system and load

In Fig.1, geometric property. coordinate sys-
tem, loading condition of stiffened cylindrical
shell treated in this paper is presented. It is as-
sumed that thin shell theory, shallow shell theo-
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ry. Donnell s theory can be applied and that the
magnitude, change rate of geometric imperfec-
tion can be negligible compared with the radius
of stiffened cylindrical shell. It is also assumed
that the stiffener spacing is close enough for or-
thotropic shell theory to be applied and both
edges are simply supported.

Nondimensional equlibrium and compatibility
equation, boundary condition can be derived
from virtual work theorem{9]. Nondimensional
equilibrium equation and compatibility equation
are
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by =(1+K,)z,K,

Load condition equation is

[#fim dn=-0 a E=0.n (6)

Circularity condition is

2" av
®

w, w, satisfying simple support condition
can be written like Eq. (8).

—dn=0 (7

w= Aﬁ’ A, myn2gmy SiD 1 1(m)E cos n2(m)n
" ®
Wo = 2 Cpyiom) n(m) SID n1(m)g cos n2(m)n
m=1 .

where NM means the number of buckling modes
considered, n1(m) m-th longitudinal half wave
number, n2{(m) m-th cirdumferential full wave
‘number respectively. By substituting Eq. (8) in-
to Eq. (2)-(7), nondimensionalized stress func-
tion f can be obtained. After substituting f into
the equilibrium equation and performing
Galerkin integration with respect to each buck-
ling mode. nonlinear coupled algebraic equation
can be obtained. Since the equation is nonlinear
equation of multimode generalized ccordinates
under given load condition, the exact solution
can hardly be obtained and so an approximate
solution can be obtained by iteration under giv-
en load condition.

Incase gD (m=1,,, NM) means (r+1)
-th approxixﬁ‘é({'éﬂs("é)lution under i-th load Z. it
can be written as follows according to Newton s
quasi-linearization theorem.

(ir+1) = a(i,r) + (i,r)

Am=1, ., NM)
#I{m)n2(m) i(m)n2(m) X(m)n2(m)

9

After substituting Eq. (9) to Eq. (1) and ne-~
glecting higher-order terms, Eq. (1) can be
written as the following matrix equation.

[k]? {8a}"” = (R} (10)
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where [K] means stiffness matrix which is non-
linear function of Z,a , (m=1,
NM), {8a} incrementa ger{eré'ﬁ;eé ccordinate
matrix and {R} residual force matrix. The solu-
tion in i~th load can be obtained if the norm of
{R} satisfy the convergence criteria and the so-
lution is used as the first guess for solution of
(i+1)-th load step. By repeating the above pro-
cess, buckling load can be obtained.

3. Probabilistic Charateristics of Geometric
Imperfection

As geometric initial imperfection can be writ-
ten as Eq. (B), the mean of the inperfection can
be written as follows.

E [Wo (in)]

M ) .

= 2_‘1 E[cnl(m),n2(m)] sin n1(m)& cos n2(mM  (11)
(e) 1

E [Cnl(m),nZ(m)] Y »%1 € lm).n2(m) (12)

where superscript(e) means ensemble, M the
size of discrete data.
Covariance function can be written as follows.
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where S, , means the element of variance-co-
variance matnx[S]
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4. Reliability Analysis Method

4.1 Definition of failure probability

When x means basic random variable vector
affecting structural safety and f£(x,, , ,x,)
joint probability density function of the variab-
les, structural failure probability P, can be writ-
ten as follows

P =1~ -[Dfx(xp , ,x,,) dD (15)

where D means safe zone of structure.
Hyperplane dividing the safe and unsafe zone in
the n-dimensional space of basic random vari-
ables means failure surface and the equation
expressing the failure surface means the limit s-
tate equation. Limit state equation Z can be
written as follows.

Z=G(%)=0 (16)

where G{ 3) means state function. After ob-
taining probability density function or distribu-
tion function by using joint probability density
function of X, the probability can be calculated
in case of Z ( 0, which means failure probability

4.2 Approximate reliability analysis

method

The calculation of failure probability using Eq.
(15) is most accurate, but joint probability den-
sity function of basic random variables cannot
be generally known and mutiple integration, if
known, entails much difficulty. Therefore to e-
vade the difficulty, approximate method have to
be used, the typical of which are MVFOSM and
AFOSM. MVFOSM has several problems that
failure probability can be changed with the
change of limit state equation and cannot be
calculated in case of nonnormal random vari-
ables.

Hasofer & Lind[10] overcame these problems
by proposing AFOSM, in which basic random
variables are transformed into new normalized
variables of Gaussian distribution and failure
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surface is linearly approximated at the most
probable failure point which lies nearest from
the origin. Though the failure probability ob-
tained by AFOSM is more accurate than that by
MVFOSM, direct application to complex nonlin-
ear structure entails much difficulty.

4.3 Simulation method

Monte Carlo simulation method{MCM) is
widely used with the approximate method. In
the method probability density function of the s~
tate function is obtatined using the original form
of state function. The value of random variables
are generated according to the respective proba-
bility density function and these variables are
used for the calculation of the state function, s~
tatistical analysis of which gives probability
density function of state function. As only the
value of state function is necessary in this
method, it can be used for the reliability analy~
sis of the complex structure. But the method
has the weakness that it costs too much time for
reliability calculation.

4.4 Response surface method(RSM)

It is basic concept of RSM to convert real
complicated limit state equation Z(x) into prop~
er polynomial Z(X). When Z is expressed as a
function of f(xl, , ,x,,) its Taylor expansion
around mean value point :3;‘0 becomes

Z(%) = Z(%, )+ §1 (%Z—) X,

i

n 2 n
iZ( I’z ]xixj*‘ZAi 17)

g
2 iz1j=1{_0x; ox; =1
Eq. (17) becomes polynomial regression
model. According to Bucher s proposal[11], the
coupled terms can be neglected.

Z(X)=cy + icixi + iciix? + iAi (18)
=1 i=1 i=1

where
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Z(%,)=c,
9z, _.
3, =R €
1 9°2Z la=c,
2dx,0x, ' Y

In Eq. {18) x, is sampling point at which lim-
it state equation is evaluated in the interest do-
main. They are generally E[ x,.]and E[ xi]j; ko,
where E[x’,]means mean value of x;, ©; stan-
dard deviation of ;. k arbitrary real number.

The number of sampling points necessary to
get Eq. (18) is (2n+1). RSM is more efficient
than approximate method or simulation method
where faiulure probability can be calculated if
limit state equation is evaluated as many times
as the number of sampling points.

Eq. (18) can be expressed as the following
matrix form.

[Z1=[x]]c]+][A) (19
where

[z)=[z* z* z'
SRR
(rl=r s - )
[d=lco 1 - = en - - om]
[a]=[a! A7 A

and N means (2n+1), superscripts the values
of random variables and limit state equation at
the sampling points. If the error square is differ-
entiated with respect to [c}, [c],, which sat-
isfies minimization condition can be expressed
as follows.

T\l 1

(€] g = ([ [2]7) (217 (2] (20)

Therefore the approximated limit state equa-
tion becomes
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Z= [x’][c]ﬁw, (21)

=t w8

With Eq. (21) and AFOSM, first order ap-
proximate failure point on the failure surface [ED
can be obtained. With additional extrapolation
around [%,]. new starting point [xM ] is obta-
ined. Similar process is repeated until final fail-
ure probability can be obtained.

5. Numerical Calculation and Discussion

As the first example, relation between nondi-
mensional load and buckling failure probability
is analized considering only the geometric im-
perfection as the random variable. In Table 1
mean value and coefficient of variation (COV) of
geometric imperfection are listed for each analy-
sis case. In Table 2 geometric and material
characteristics of the shell are listed. The rela-
tion between nondimensional load and buckling
failure probability are shown in Fig.2 and Fig.3.
The larger COV of geometric imperfection gives
greater buckling probability when external load
is below deterministic buckling load. When load
is above the deterministic buckling load, the re-
verse is true.

Phenomena above mentioned means that in
the postbuckling range the case with greater
COV can search new stability point more easily
than the case with less COV. Histogram of prob-
abilistic buckling load for the typical case is pre-
sented in Fig.4, the distribution of which is sim-
ilar to normal distribution. n Fig.5, stochastic
imperfection sensitivity analysis result by RSM
is compared with that by MCM for the case 2 of
Table 1. Both results are very similar, which
shows that RSM in this paper gives very exact
reliability analysis results. Also RSM reduces
computer time very much comparing with MCM
as can be shown in Table 3.

As the element affecting buckling probability
of stiffened cylindrical shell, many parameters
such as elasticity modulus. stiffener section

et
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area, moment of inertia of stiffener except geo-
metric imperfection can be considered. Reliabili-
ty analysis result considering elasticity modulus
as additional random variable is compared with
results considering only geometric imperfection
in Fig.6. Both results are nearly same, which
shows that elasticity modulus has negligible ef-
fect on buckling probability of stiffened shell un-
der axial compresion. Stringer section area has
random property and analysis result considering
stringer section area as additional random vari-
able is compared with results considering only
geometric imperfection in Fig.7, Fig.8. As can be
shown, the effect of stringer section area on the
buckling probability is definite in case of small
COV of geometric imperfection and its effect is
rather diminished with the increase of COV of
geometric imperfection.

The above results coincides with the result by
Lin[13] for the 2~dimensional frame structures
with geometric imperfection. As can be shown in
Fig.9, moment of inertia of stringer section area
has a negligible effect on the buckling probabili~
ty. In Fig.10, histogram of buckling load is
shown for the case considering moment of iner-
tia of stringer section as an additional random
variable.

Buckling probability can be considered to have
a normal distribution charateristics, which can
be confirmed from the various results. Therefore
the relation between reliability index and
buckling probability can be utilized to get a use-
ful result. The relation between reliability index
and failure probability Py can be presented as
follows.

B=-07(7;) (22)

where

® ; Normal cumulative distribution
Sfunction
P; ; Failure probability

In Fig.11 the relation between external load
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and reliability index is shown for 3 cases in
Table 1. It is recognized that reliability index
decreases with the increase of COV. In Fig.12
the relation between safety parameter and is
shown, from which it is recognized that larger
safety parameter is required to have the same
reliability index with the increase of COV of geo-
metric imperfection.

With the increase of the number of geometric
imperfection modes, analysis for the characteris-
tics of failure probability was performed as Table
4. In Fig.13 the relation between load and fail-
ure probability with the change of COV of each
mode is shown, the trend of which is nearly the
same as that of case 1 & 2.

In Fig.14 the relation between reliability in-
dex and load is shown with the increase of num-
ber of imperfection modes for 2 cases in Table 4
are shown. Greater safety parameters are re-
quired to have the same reliability index with
the increase of COV.

In Fig.15 the failure probability trend for the
case with modal correlation is compared with
that for the case without correlation, which
shows little difference. Therefore it can be recog-
nized that the effect of correlation between im-
perfection modes is negligible. In Fig. 16 failure
probability trend are shown with the increase of
modes number. Generally the results with the
increased number of imperfection modes is
shown to translate parallel to the load axis. The
analysis for the real shell with multimode im-
perfections is performed using data of Arbocz{7]
in Table 5. The imperfection modes and corre-
sponding Fourier coefficients are contained in
Table 6. In Fig.17 the reliability analysis result
for the Arbocz shells by RSM in this paper is
compared with that by MCM and it is recog-
nized that two results are nearly the same.

Simple calculations are performed for the
typical case of ring-stiffened shell. In Table 7
the geometric and material characteristics are
contained for the ring-stiffened shell B1. Buck-
ling probability is calculated and presented in
Fig.18 for the case in which only geometric im-
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perfection is random variable and differs in
COV.

The general trend is shown to be similar to
that for the stringer-stiffened shell. The charac-
teristics of random variables are presented in
Table 8. Reliability analysis is performed consid-
ering ring section area as additional random
variable and characteristics of random variables,
reliability results are shown in Table 8, Fig.19-
20 respectively.

It is recognized that the effect of COV of geo-
metric imperfection is definite for the low COV
but it decreases with the increase of COV.

In Fig.21 the relation between load and reli-

Table 1 Reliability analysis cases for shell S1

Random .
VaL{  Cro0) Ci.10 As(mm?) | Is(mm®)

(Kef/mm®)

Case

mean mean mean
;| mean 0.03| mean 03 | g | g7g5 |0 14981
cov 01 feov 011 oy 00| oy 00|cov 00
mean mean mean
g {mean 0.03) mean 0.3) oagpa | g9g5 |9 14951
cov. 0.3 ) cov 03 | cou 0.0 cov00|cov 0.0
mean mean mean
689E3 | 0795 |0.149E-1
cov. 0.0 ﬂ0.0 cov 0.0
mean mean mean
4 | mean 0.05) mean 05| cegps | 905 | 14981
cow 014 cor 0110001 oy 00 cov 00

| E—

3 | mean 0.03! mean 0.3
cov. 06 {cov 06

mearn mean | mean
5 | mean 8'05 mean gg 6893 | 0795  |0.1498-1
cov. 0.3 | cov 0. ¢0v.001 cov.00]cov 00

O 5 0 mean mean mean
g {mean o’g mezn 02 689R3 10795 |0.149-1
OV B 10N B 00u 0.0 cov 00 |cov 0.0
mean mean mean
g | mean 8-03 mean, 82 689E3 | 0.795 |0.149E-1
cov 03 | cos 0. cov 00 clo.v.0.0 c.ov. 0.0

ability index for the case 2 in Table 8 is shown
and it is recognized that reliability index is re-
duced with increase of COV of geometric imper-
fection under the same load. In Fig.22 the rela-
tion between safety parameter and for the same
case is shown and it is shown that larger safety
parameter is required to get the same reliability
index with the increase of COV of geometric im—
perfection.

Table 2 Geometric & material charateristics of

stringer stiffened shell S1

[tem Value

L{mm) 140.26

L/R 1.38

R/h 518.37

dis/R 0.0625

Zs/h -1.709

As/digh 0638 |

Lso/digh’ 0311 ]
i Poisson’s Ratio 0.3

Batdorf Parameter 942.1

Table3 Comparison of calculation time for case 2
( Alliant FX - 2812)

Monte Carlo Method 266 s
(10,000 times) ec.
Response surface method ] 16 sec.

Table4 Reliability analysis case with multi mode
imperfections as random variables for shell S1

Coro F L Corp ::""ﬁ?a,uT

Case C1o.0)

ean 0.03| mean 03 | AL | mean [ mean
AS1 0'1 0'1 6.89E3 | 0.795 0.1498-1
eo.v UL oV Bl 0w 0.0 cow 0.1 [cov 0.0

TR mean 0.03{ mean 0.3} mean 0.3} mean 0.3 00
cov.0.1 [ cov0l]|cov0l]cov 01 ‘

0 3 03 mean mean mean
AS2 | mean 0-0 mean o1l 6sms |01 01408
cov 03 | cov . cov. 00! cov03{cov 00
mean mean mean
[gp | mean 323 mean gg 68983 | 0795 |0.1498-1
GOV V.3 LoV U2 G000 cov 0.0]cov 0.0

TR | Mean 0.03| mean 0.3| mean 0.3 | mean 0.3

0.0
¢ov. 03 |cov03fcov03([cov03

TR | mean 0.03 | mean 0.3] mean 0.3 | mean 0.3 01
cov.0.1 | cov0.31cov.03cov 03
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Table 5 Geometric and material properties of Arbocz

shell
shell |h{mm) |As{mm®)| Zs(mm) | lse(mm*x 100)|Js{mm* x 100 | dis(mm)
SA2 [0.1966 | 0.7987 | 0.3368|  1.5038 4.9448 8.0239
SA3 10.2807 | 0.7472 1 0.3614]  1.2033 4.0146 8.0289
SA410.2593 | 0.4890 | 0.2758]  0.3474 1.1283 8.0112

Table 6 Values of the equivalent Fourier: coefficient

Shell
Four. SA2 SA3 SA4
Coeff,
Ca.2 0.33691 | 0.08298 0.54217
Ca.9 0.08843 { 0.02445 0.00297
C(1,10) 0.05524 | 0.03148 0.00414
C(1.11 0.05494 | 0.01912 0.00502
C.19) 0.01106 0.00689 0.00424
Ca.2n 0.00879 | 0.00475 0.00095

Table 7 Geometric & material charateristics of ring

stiffened shell B1
ltem Value
L{mm) 130.10
L/R 1.31
R/h 430.51
dis/R 0.309
Zi/h -1.127
Ar/dish 0.0414
Iro/dish® 0.311
Elastic Modulus (Kgf/mm?) 6.89E3
Poisson’s Ratio 0.3
Batdorf Parameter 942.1

Table 8 Reliability analysis cases for shell B1

Random
variable| C(16.0) Ca.8) Ar(mm?)
Case
R1 mean 0.01 | mean 0.1 | mean 0.01
cov. 0.1 | cov. 0.1 cov. 0.0
R mean 0.01 { mean 0.1 | mean 0.307
cov. 03 ! cov. 0.3 [ cov 00
ARI mean 0.01 | mean 0.1 | mean 0.307
cov. 0.1 {cov. 0.1 | cov 0.1
mean 0.01 { mean 0.1 { mean 0.307
AR2 cov. 0.3 | cov. 0.3 | cov. 0.3
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6. Concluding Remarks

In this paper RSM, which can overcome the
problems of conventional reliability analysis
method is combined, with the multimode analy-
sis algorithm to perform the stochastic imperfec-
tion sensitivity analysis of stiffened cylindrical
shells and its validity and efficiency are con-
firmed. Buckling failure probability increases
with the increase of mean value, COV, mode
number of geometric imperfection under the
same external load. Required safety parameter
increases to get equal reliability index. Effect of
random variables other than geometric imper-
fection on the buckling probability is analysed
and stiffener section area is recognized as an
important random variable for the determina-
tion of buckling probability. Distribution of
buckling load of various cases is recognized sim-
ilar to normal distribution. From the character-
istics of probabilistic buckling load, relation be-
tween reliability index and safety parameter can
be obtained in addition to the relation between
load and reliability index. Those results can be
used to determine the range of required safety
parameter and acceptable imperfection.
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