• Title/Summary/Keyword: Sensing plate

Search Result 119, Processing Time 0.025 seconds

Acceleration Estimation of a Steel Plate Girder Bridge using Multiplexed FBG Sensors (다중화된 광섬유센서를 이용한 강철도교의 가속도 유추)

  • Chung, Won-Seok;Kang, Dong-Hoon;Kim, Hyun-Min
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1062-1067
    • /
    • 2007
  • This study presents an experimental technique to monitor the dynamic behavior of the railway bridge system simultaneously using multiplexed fiber Bragg grating (FBG) sensors. The measuring quantities include stains, curvatures, vertical deflections, and vertical accelerations. The strains are directly measured from multiplexed FBG sensors at various locations of the test bridge followed by curvature calculations based on the plane section assumption. Vertical deflections are then estimated using the Bernoulli beam theory and regression analysis. Finally, vertical accelerations are obtained from the numerical differentiation in time domain. In order to verify the proposed method, several conventional electric strain gauges, displacement transducers, and accelerometers are installed at the mid-span of the bridge for comparisons. A test train is passed over the bridge to monitor the dynamic response of the bridge. The monitoring results show that the multiplexed FBG sensing system is able to capture the essential behavior of the test bridge while resolving wiring problem in practice.

  • PDF

A DEVELOPMENT OF MATHEMATICAL MODELS FOR PREDICTION OF OPTIMAL WELD BEAD GEOMETRY FOR GMA WELDING (GMA 용접에 최적의 용접비드 형상을 예측하기 위한 수학적 모델 개발)

  • 김일수
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.118-127
    • /
    • 1997
  • With the trend towards welding automation and robotization, mathematical models for studying the influence of various variables on the weld bead geometry in gas metal arc (GMA) welding process are required. Partial penetration, single-pass bead-on-plate welds using the GMA welding process were fabricated in 12mm mild steel plates employed four different process variables. Experimental results has been designed to investigate the analytical and empirical formulae, and develop mathematical equations for understanding the relationship between process variables and weld bead geometry. The relationships can be usefully employed not only for open loop process control, but also for adaptive control provided that dynamic sensing of process output is performed.

  • PDF

Circuit Design for Compesation of a Dry Fingerprint Image Quality on Charge Sharing Scheme (전하분할 방식의 건조 지문이미지 보상회로 설계)

  • Jung, Seung-Min;Yeo, Hyeop-Goo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.795-797
    • /
    • 2013
  • This paper describes a charge sharing capacitive-sensing circuit technique that improves the quality of images captured with fingerprint sensor LSIs. When the finger is dry, the electrical resistance of a finger surface is high. It leads to poor image quality. To capture clear images even when the finger is dry, the modified capacitive detection circuit improves the image quality using an enhancement plate at the finger surface and a voltage control circuit. The test circuit is analyzed on $0.35{\mu}m$ CMOS process.

  • PDF

The Synthesis Method of Tin Dioxide Nanoparticles by Plasma-Assisted Electrolysis Process and Gas Sensing Property

  • Kim, Tae Hyung;Song, Yoseb;Lee, Chan-Gi;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.351-356
    • /
    • 2017
  • Tin dioxide nanoparticles are prepared using a newly developed synthesis method of plasma-assisted electrolysis. A high voltage is applied to the tin metal plate to apply a high pressure and temperature to the synthesized oxide layer on the metal surface, producing nanoparticles in a low concentration of sulfuric acid. The particle size, morphology, and size distribution is controlled by the concentration of electrolytes and frequency of the power supply. The as-prepared powder of tin dioxide nanoparticles is used to fabricate a gas sensor to investigate the potential application. The particle-based gas sensor exhibits a short response and recovery time. There is sensitivity to the reduction gas for the gas flowing at rates of 50, 250, and 500 ppm of $H_2S$ gas.

An Experimental Study on Optimal Condition of Aerodynamic Lens in the Modified ISPM (개선형 ISPM에서 공기역학적 렌즈의 최적조건에 대한 실험적 연구)

  • 임효재;차옥환;설용태
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.1-4
    • /
    • 2004
  • An experimental study was conducted on the optimal configuration and size of ADFL(Aerodynamic Focusing Lens) which used in modified ISPM(In-Situ Particle Monitoring). The particle counting efficiency has been known as a function of distance and size of ADFL, thus we varied these parameters to find out the optimum values. From a result of experiment, it was found that two lenses and 6mm space between them showed a maximum particle measuring efficiency. To apply this modified ISPM to semiconductor manufacturing field, we need more experiment about the pressure change, flow rate, and input particle size.

  • PDF

Charging Characteristics of Electrostatic Sprayer Applied Square Pulse (구형파 펄스를 인가한 정전분무 장치의 대전량 특성)

  • 박승록;문재덕
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.573-578
    • /
    • 2003
  • In this study, new type of induction charging system for electrostatic spraying was manufactured and proposed to improve the electrical safety and charging efficiency. And parameters of proposed system to generate the maximum deposition current with electrical safety were selected and investigated. The selected parameters were frequency of square pulse and thickness of insulation material, outer diameter of device and thickness and positions of electrode. Charging quantity of water drop was measured by deposition current detected from sensing plate indirectly. The maximum deposition current for each parameter were 3.5[uA] at the frequency of 15[kHz] and thickness of 0.25[mm] insulating layer. And maximum deposition currents were 2.8[uA] and 3.0[uA] at 25[mm] outer diameter of charging device and 0.25[mm] thickness of electrode each. Effects of electrode position from spraying nozzle on deposition current was a little.

Design and Strain Analysis of Precision 3-component Load Cell (정밀 3분력(Fz, Fy, Mz) 로드셀의 설계 및 변형률해석)

  • Kim, Gab-Soon;Rhee, Se-Hun;Um, Ki-Woan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.222-232
    • /
    • 1999
  • This paper describes the development of a precision 3-component load cell with plate beams which may be used for measuring forces Fx, Fy and moment Mz simultaneously in industry. We have derived equations to predict the bending strains on the surface of the beams under forces or moment. We have also determined the attachment location of strain gages of each sensor and fabricated 3-component load cell. To evaluate the rated strain and interference error of each sensor, we have carried out characteristic test of precision 3-component load cell. It reveals that the rated strain calculated from the derived equations are good agreement with the results from Finite Element Method analysis.

  • PDF

Surface deformation monitoring of Augustine volcano, Alaska using GPS measurement - A case study of the 2006 eruption - (GPS를 이용한 미국 알래스카 어거스틴 화산의 지표변위 감시 - 2006년 분화를 중심으로 -)

  • Kim, Su-Kyung;Hwang, Eui-Hong;Kim, Young-Hwa;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.545-554
    • /
    • 2013
  • Augustine is an active stratovolcano located in southwest of Cook Inlet, about 290 kilometers southwest of Anchorage, Alaska. Between January 11 and 28, 2006, the volcano erupted explosively 14 times. We collected twelve permanent GPS stations operating by Plate Boundary Observatory (PBO) from 2005 to 2011. All data processing was carried out using Bernese GPS Software V5.0 with IGS precise orbit. Static baseline processing by fixing AC59 station was applied for the volcano activity monitoring. AC59 is the nearest (about 24.5 km) station to Augustine volcano, and located on North America Plate including Augustine Island. The test results show inflation (9.7 cm/yr) and deflation (-9.2 cm/yr) of volcano before and after eruption around crater clearly. After volcano activity has reached a plateau, some of the GPS stations installed north of the volcano show ground subsidence phenomenon caused by compaction of pyroclastic flows. These results indicate the possibility of using surface deformation observed by GPS for monitoring and prediction of volcano activity.

Catalytic combustion type hydrogen gas sensor using TiO2 and UV LED (TiO2 광촉매와 UV LED를 이용한 접촉연소식 수소센서)

  • Hong, Dae-Ung;Han, Chi-Hwan;Han, Sang-Do;Gwak, Ji-Hye;Lee, Sang-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.7-10
    • /
    • 2007
  • A thick film catalytic gas sensors which can be operated at $142^{\circ}C$ in presence of ultra violet-light emitting diode has been developed to measure hydrogen concentration in 0-5 % range. The sensing material as a combustion catalyst consists of $TiO_{2}$ (5 wt%) and Pd/Pt (20 wt%) supported on $Al_{2}O_{3}$ powder and the reference material to compensate the heat capacity of it in a bridge circuit was an catalyst free $Al_{2}O_{3}$ powder. Platinum heater and sensor materials were formed on the alumina plate by screen printing method and heat treatment. The effect of UV radiation in the presence of photo catalyst $TiO_{2}$ on the sensor sensitivity, response and recovery time has been investigated. The reduction of operating temperature from $192^{\circ}C$ to $142^{\circ}C$ for hydrogen gas sensing property in presence of UV radiation is attributed to the hydroxy radical and superoxide which was formed at the surface of $TiO_{2}$ under UV radiation.

A Surface-micromachined Tunable Microgyroscope (주파수 조정가능한 박막미세가공 마이크로 자이로)

  • Lee, Ki-Bang;Yoon, Jun-Bo;Kang, Myung-Seok;Cho, Young-Ho;Youn, Sung-Kie;Kim, Choong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1968-1970
    • /
    • 1996
  • We investigate a surface-micromachined polysilicon microgyroscope, whose resonant frequencies are electrostatically-tunable after fabrication. The microgyroscope with two oscillation nudes has been designed so that the resonant frequency in the sensing mode is higher than that in the actuating mode. The microgyroscope has been fabricated by a 4-mask surface-micrormachining process, including the deep RIE of a $6{\mu}m$-thick LPCVD polycrystalline silicon layer. The resonant frequency in the sensing mode has been lowered to that in actuating mode through the adjustment of an inter-plate bias voltage; thereby achieving a frequency matching at 5.8kHz under the bias voltage of 2V in a reduced pressure of 0.1torr. For an input angular rate of $50^{\circ}/sec$, an output signal of 20mV has been measured from the tuned microgyroscope under an AC drive voltage of 2V with a DC bias voltage of 3V.

  • PDF