DOI QR코드

DOI QR Code

Catalytic combustion type hydrogen gas sensor using TiO2 and UV LED

TiO2 광촉매와 UV LED를 이용한 접촉연소식 수소센서

  • Hong, Dae-Ung (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Han, Chi-Hwan (Photo- & Electro-Materials Research Center, Korea Institute of Energy Research) ;
  • Han, Sang-Do (Photo- & Electro-Materials Research Center, Korea Institute of Energy Research) ;
  • Gwak, Ji-Hye (Photo- & Electro-Materials Research Center, Korea Institute of Energy Research) ;
  • Lee, Sang-Yeol (Department of Electrical and Electronic Engineering, Yonsei University)
  • 홍대웅 (연세대학교 전기전자공학부) ;
  • 한치환 (한국에너지기술연구원 광.전기소재연구센터) ;
  • 한상도 (한국에너지기술연구원 광.전기소재연구센터) ;
  • 곽지혜 (한국에너지기술연구원 광.전기소재연구센터) ;
  • 이상렬 (연세대학교 전기전자공학부)
  • Published : 2007.01.31

Abstract

A thick film catalytic gas sensors which can be operated at $142^{\circ}C$ in presence of ultra violet-light emitting diode has been developed to measure hydrogen concentration in 0-5 % range. The sensing material as a combustion catalyst consists of $TiO_{2}$ (5 wt%) and Pd/Pt (20 wt%) supported on $Al_{2}O_{3}$ powder and the reference material to compensate the heat capacity of it in a bridge circuit was an catalyst free $Al_{2}O_{3}$ powder. Platinum heater and sensor materials were formed on the alumina plate by screen printing method and heat treatment. The effect of UV radiation in the presence of photo catalyst $TiO_{2}$ on the sensor sensitivity, response and recovery time has been investigated. The reduction of operating temperature from $192^{\circ}C$ to $142^{\circ}C$ for hydrogen gas sensing property in presence of UV radiation is attributed to the hydroxy radical and superoxide which was formed at the surface of $TiO_{2}$ under UV radiation.

Keywords

References

  1. D. C. Young, G. A. Mill, and R. Wall, 'Feasibility of renewable energy storage using hydrogen in remote communities in Bhutan', International J. of Hydrogen Energy, 2006, in press
  2. V. A. Goltsov and T. N. Veziroglu, 'A step on the road to hydrogen civilization', International J. of Hydrogen Energy, vol. 27, pp.719-723, 2004
  3. M. A. DeLuchi, 'Hydrogen vehicles: An evaluation of fuel storage, performance, safety, environmental impacts and costs', International J. of Hydrogen Energy, vol. 14, pp. 81-130, 1989 https://doi.org/10.1016/0360-3199(89)90001-3
  4. S. H. Browne, D. R. Neill, and P. K. Takahashi, 'The Hawaii hydrogen from renewable energy program', International J. of Hydrogen Energy, vol. 13, pp. 483-488, 1989
  5. J. G Firth, A. Jones, and T. A. Jones, 'Principle of the detection of flammable atmospheres by catalytic devices', Combust. Flame., vol. 21, pp. 303-311, 1973
  6. S. J. Gentry and T. A. Jones, 'The role of catalysts in solid-state gas sensors', Sens, Actuators, vol. 10, pp. 141-163, 1986 https://doi.org/10.1016/0250-6874(86)80039-7
  7. M. G. Jones and T. G. Nevell, 'The detection of hydrogen using catalytic flammable gas sensors', Sens. Actuators, vol. 16, pp. 215-224, 1989 https://doi.org/10.1016/0250-6874(89)87003-9
  8. V. R. Katti, A. K. Dehnath, S. C. Gadkari, S. K. Gupta, and V. C. Sahni, 'Passivated thick film catalytic type H2 sensor operating at low temperature', Sens. Actuators B, vol. 84, pp. 219-225, 2002 https://doi.org/10.1016/S0925-4005(02)00028-X
  9. J. Saura, 'Gas-sensing properties of $SnO_2$ pyrolytic films subjected to ultra violet radiation', Sens. Actuators B, vol. 17, pp. 211-214, 1994 https://doi.org/10.1016/0925-4005(93)00874-X
  10. P. Camagni, G. Faglia, P. Galinetto, C. Perego, G. Samoggia, and G. Sberveglieri, 'Photo sensitivity activation of $SnO_2$ thin film gas sensors at room temperature', Sens. Actuators B, vol. 31, pp. 99-103, 1996 https://doi.org/10.1016/0925-4005(96)80023-2
  11. E. Comini,. A crestal!i, G. Faglia, and G. Sberveglieri, Sens. Actuators B, vol. 65, pp. 260-263, 2000 https://doi.org/10.1016/S0925-4005(99)00350-0
  12. S. Shukla, R. Agrawal, H. J. Cho, and S. Seal, 'Effect of UV radiation exposure on room temperaturehydrogen sensitivity of nano crystalline doped tin oxide sensor incorporatedinto microelectro mechanical system device', J. Applied Physics, vol. 97, 054307, 2005 https://doi.org/10.1063/1.1851597
  13. G. K. Mor, M. A. Carvalho, O. K. Varghege, M. V. Pishko, and C. A. Grimes, 'A room temperature $TiO_2$-nanotube hydrogen sensor able to self clean photo activity from environmental contamination', J. Mater. Res., vol. 19, pp. 628-634, 2004 https://doi.org/10.1557/jmr.2004.19.2.628
  14. J. J. Carr, 'Sensors & Curcuit, PTR Prentice Hall Englewood Cliffs', New Jersey 07632, p. 75, 1993
  15. P. T. Moseley and B. C. Tofrield, 'Solid state gas sensors', lOP Publishing Ltd. Adam Hilger, Bristal, U. K. 1987
  16. C.-H. Han, S.-D. Han, and J.-D. Kim, 'Micro-hydrogen gas sensor using $SnO_2$ coated F-doped $SnO_2$', 한국센서학회 종합학술대회 논문집, 제16권, 제1호, pp. 158-161, 대전, 한국, 2005
  17. D. U. Hong, c.-H. Han, I.-J. Kim, S.-D. Han, and B.-S. Lee, 'Catalytic combustible hydrogen sensor using crystalline F-doped $SnO_2$', 한국센서학회 종합학술대회 논문집, 제16권, 제1호, pp. 292-293, 대전, 한국, 2005

Cited by

  1. Small Methane Detection System using Optical Spectrum Characteristics vol.20, pp.1, 2011, https://doi.org/10.5369/JSST.2011.20.1.53