• Title/Summary/Keyword: Sensing Quantification Analysis

Search Result 17, Processing Time 0.026 seconds

2-Step Structural Damage Analysis Based on Foundation Model for Structural Condition Assessment (시설물 상태평가를 위한 파운데이션 모델 기반 2-Step 시설물 손상 분석)

  • Hyunsoo Park;Hwiyoung Kim ;Dongki Chung
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.621-635
    • /
    • 2023
  • The assessment of structural condition is a crucial process for evaluating its usability and determining the diagnostic cycle. The currently employed manpower-based methods suffer from issues related to safety, efficiency, and objectivity. To address these concerns, research based on deep learning using images is being conducted. However, acquiring structural damage data is challenging, making it difficult to construct a substantial amount of training data, thus limiting the effectiveness of deep learning-based condition assessment. In this study, we propose a foundation model-based 2-step structural damage analysis to overcome the lack of training data in image-based structural condition assessments. We subdivided the elements of structural condition assessment into instantiation and quantification. In the quantification step, we applied a foundation model for image segmentation. Our method demonstrated a 10%-point increase in mean intersection over union compared to conventional image segmentation techniques, with a notable 40%-point improvement in the case of rebar exposure. We anticipate that our proposed approach will enhance performance in domains where acquiring training data is challenging.

Assessment of the Near Real-Time Validation for the AQUA Satellite Level-2 Observation Products

  • Yang Min-Sil;Lee Jeongsoon;Lee Chol;Park Jong-Seo;Kim Hee-Ah
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.35-38
    • /
    • 2004
  • We developed a Near Real-Time Validation System (NRVS) for the Level-2 Products of AQUA Satellite. AQUA satellite is the second largest project of Earth Observing System (EOS) mission of NASA. This satellite provides the information of water cycle of the entire earth with many different forms. Among its products, we have used five kinds of level-2 geophysical parameters containing rain rate, sea surface wind speed, skin surface temperature, atmospheric temperature profile, and atmospheric humidity profile. To use these products in a scientific purpose, reasonable quantification is indispensable. In this paper we explain the near real-time validation system process and its detail algorithm. Its simulation results are also analyzed in a quantitative way. As reference data set in-situ measured meteorological data which are periodically gathered and provided by the Korea Meteorological Administration (KMA) is processed. Not only site-specific analysis but also time-series analysis of the validation results are explained and detail algorithms are described.

  • PDF

3D Measurement Method Based on Point Cloud and Solid Model for Urban SingleTrees (Point cloud와 solid model을 기반으로 한 단일수목 입체적 정량화기법 연구)

  • Park, Haekyung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1139-1149
    • /
    • 2017
  • Measuring tree's volume is very important input data of various environmental analysis modeling However, It's difficult to use economical and equipment to measure a fragmented small green space in the city. In addition, Trees are sensitive to seasons, so we need new and easier equipment and quantification methods for measuring trees than lidar for high frequency monitoring. In particular, the tree's size in a city affect management costs, ecosystem services, safety, and so need to be managed and informed on the individual tree-based. In this study, we aim to acquire image data with UAV(Unmanned Aerial Vehicle), which can be operated at low cost and frequently, and quickly and easily quantify a single tree using SfM-MVS(Structure from Motion-Multi View Stereo), and we evaluate the impact of reducing number of images on the point density of point clouds generated from SfM-MVS and the quantification of single trees. Also, We used the Watertight model to estimate the volume of a single tree and to shape it into a 3D structure and compare it with the quantification results of 3 different type of 3D models. The results of the analysis show that UAV, SfM-MVS and solid model can quantify and shape a single tree with low cost and high time resolution easily. This study is only for a single tree, Therefore, in order to apply it to a larger scale, it is necessary to follow up research to develop it, such as convergence with various spatial information data, improvement of quantification technique and flight plan for enlarging green space.

Review of Remote Sensing Studies on Groundwater Resources (원격탐사의 지하수 수자원 적용 사례 고찰)

  • Lee, Jeongho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.855-866
    • /
    • 2017
  • Several research cases using remote sensing methods to analyze changes of storage and dynamics of groundwater aquifer were reviewed in this paper. The status of groundwater storage, in an area with regional scale, could be qualitatively inferred from geological feature, surface water altimetry and topography, distribution of vegetation, and difference between precipitation and evapotranspiration. These qualitative indicators could be measured by geological lineament analysis, airborne magnetic survey, DEM analysis, LAI and NDVI calculation, and surface energy balance modeling. It is certain that GRACE and InSAR have received remarkable attentions as direct utilization from satellite data for quantification of groundwater storage and dynamics. GRACE, composed of twin satellites having acceleration sensors, could detect global or regional microgravity changes and transform them into mass changes of water on surface and inside of the Earth. Numerous studies in terms of groundwater storage using GRACE sensor data were performed with several merits such that (1) there is no requirement of sensor data, (2) auxiliary data for quantification of groundwater can be entirely obtained from another satellite sensors, and (3) algorithms for processing measured data have continuously progressed from designated data management center. The limitations of GRACE for groundwater storage measurement could be defined as follows: (1) In an area with small scale, mass change quantification of groundwater might be inaccurate due to detection limit of the acceleration sensor, and (2) the results would be overestimated in case of combination between sensor and field survey data. InSAR can quantify the dynamic characteristics of aquifer by measuring vertical micro displacement, using linear proportional relation between groundwater head and vertical surface movement. However, InSAR data might now constrain their application to arid or semi-arid area whose land cover appear to be simple, and are hard to apply to the area with the anticipation of loss of coherence with surface. Development of GRACE and InSAR sensor data preprocessing algorithms optimized to topography, geology, and natural conditions of Korea should be prioritized to regionally quantify the mass change and dynamics of the groundwater resources of Korea.

Characterization of Cone Index and Tillage Draft Data to Define Design Parameters for an On-the-go Soil Strength Profile Sensor

  • Chung S. O.;Sudduth Kenneth A.
    • Agricultural and Biosystems Engineering
    • /
    • v.5 no.1
    • /
    • pp.10-20
    • /
    • 2004
  • Precision agriculture aims to minimize costs and environmental damage caused by agriculture and to maximize crop yield and profitability, based on information collected at within-field locations. In this process, quantification of soil physical properties, including soil strength, would be useful. To quantify and manage variability in soil strength, there is need for a strength sensor that can take measurements continuously while traveling across the field. In this paper, preliminary analyses were conducted using two datasets available with current technology, (1) cone penetrometer readings collected at different compaction levels and for different soil textures and (2) tillage draft (TD) collected from an entire field. The objective was to provide information useful for design of an on-the-go soil strength profile sensor and for interpretation of sensor test results. Analysis of cone index (CI) profiles led to the selection of a 0.5-m design sensing depth, 10-MPa maximum expected soil strength, and 0.1-MPa sensing resolution. Compaction level, depth, texture, and water content of the soil all affected CI. The effects of these interacting factors on data obtained with the soil strength sensor should be investigated through experiments. Spatial analyses of CI and TD indicated that the on-the-go soil strength sensor should acquire high spatial-resolution, high-frequency ($\ge$ 4 Hz) measurements to capture within-field spatial variability.

  • PDF

An Amperometric Proton Selective Sensor with an Elliptic Microhole Liquid/Gel Interface for Vitamin-C Quantification

  • Faisal, Shaikh Nayeem;Hossain, Md. Mokarrom;Lee, Hye-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • An amperometric ascorbic acid selective sensor utilizing the transfer reaction of proton liberated from the dissociation of ascorbic acid in aqueous solution across an elliptic micro-hole water/organic gel interface is demonstrated. This redox inactive sensing platform offers an alternative way for the detection of ascorbic acid to avoid a fouling effect which is one of the major concerns in redox based sensing systems. The detection principle is simply measuring the current change with respect to the assisted transfer of protons by a proton selective ionophore (e.g., ETH 1778) across the micro-hole interface between the water and the polyvinylchloride-2-nitrophenyloctylether gel phase. The assisted transfer reaction of protons generated from ascorbic acid across the polarized micro-hole interface was first characterized using cyclic voltammetry. An improved sensitivity for the quantitative analysis of ascorbic acid was achieved using differential pulse stripping voltammetry with a linear response ranging from 1 to $100\;{\mu}M$ concentrations of ascorbic acid. As a demonstration, the developed sensor was applied for analyzing the content of vitamin-C in different types of commercial pharmaceutical tablets and syrups, and a satisfactory recovery from these samples were also obtained.

Development of Colorimetric Paper Sensor for Pesticide Detection Using Competitive-inhibiting Reaction

  • Kim, Hyeok Jung;Kim, Yeji;Park, Su Jung;Kwon, Chanho;Noh, Hyeran
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.326-331
    • /
    • 2018
  • Contamination by pesticides is an everincreasing problem associated with fields of environmental management and healthcare. Accordingly, appropriate treatments are in demand. Pesticide detection methods have been researched extensively, aimed at making the detection convenient, fast, cost-effective, and easy to use. Among the various detecting strategies, paper-based assay is potent for real-time pesticide sensing due to its unique advantages including disposability, light weight, and low cost. In this study, a paper-based sensor for chlorpyrifos, an organophosphate pesticide, has been developed by layering three sheets of patterned plates. In colorimetric quantification of pesticides, the blue color produced by the interaction between acetylcholinesterase and indoxyl acetate is inhibited by the pesticide molecules present in the sample solutions. With the optimized paper-based sensor, the pesticide is sensitively detected (limit of detection =8.60 ppm) within 5min. Furthermore, the shelf life of the device is enhanced to 14 days after from the fabrication, by treating trehalose solution onto the deposited reagents. We expect the paper-based device to be utilized as a first-screening analytic device for water quality monitoring and food analysis.

The Analysis of Expression of Autoinducer Synthesis Genes Involved in Quorum Sensing among Catheter Associated Bacteria (요로감염에 관여하는 카테터 내 박테리아의 Quorum Sensing 관련 autoinducer 합성 유전자의 발현분석)

  • Lee, Mi-Hye;Seo, Pil-Soo;Lee, Ji-Youl;Peck, Kyong-Ran;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.277-285
    • /
    • 2006
  • The most biofilm forming bacteria in catheter, Esctherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were isolated and identified from a patient's catheter occuring catheter-associated urinary tract infection (CA-UTI). We examined mRNA expression and its quantification of AIs synthetic genes encoding signal substance of quorum sensing from each bacterial species in order to elucidated quorum sensing mechanism. Both pure cultures for each bacterial strains and a mixed cultures with three were grown for 24 hr and 30 days. Initial densities to be able to detect mRNA expression oil single strains culture were shown at $2.4{\times}10^5$ CFU/ml, $5.4{\times}10^6$ CFU/ml of E. coli for ygaG and S. aureus for luxS, and at $6.9{\times}10^4$ CFU/ml of P. aeruginosa for rhlI and lasI. Also, in mixed culture of three, initial cell densities of mRNA expression were appear to at $7.3{\times}10^5$ CFU/ml, $1.6{\times}10^7$ CFU/ml of E. coli for ygaG and S. aureus for luxS, and at $2.1{\times}10^5$ CFU/ml of P. aeruginosa for rhlI and lasI. Each AIs synthetic gene was expressed in initial cell density and the mRNA expression of the genes were detected continously during 30 days. And then, the quantification of mRNA expression level of ygaG, rhlI, last, and luxS which were related AIs synthesis was done each time point by real-time RT-PCR. Interestingly, the mRNA levels of ygaG, rhlI, lasI, and luxS from the mixed culture was higher than those from each single strain culture. In the case of E. coli ygaG, the amount of transcript from the mixed culture was at least 30 times for that from single culture. In the case of P. aeruginosa rhlI and lasI, the amount of transcript from the mixed culture was at least 40 times and 250 times for that from single strain culture. In the case of S. aureus luxS, the amount of transcript from the mixed culture was at least 5 times for that from single strain culture. And specially, the mRNA expression of rhlI and lasI of P. aeruginosa showed the highest efficency among four AIs synthetic genes.

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

Development of a potential evaluation method for urban expansion using GIS and RS technologies (GIS와 RS를 이용한 도시확산 포텐셜 평가기법의 개발)

  • Kim, Dae-Sik;Chung, Ha-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.10 no.3 s.24
    • /
    • pp.41-51
    • /
    • 2004
  • This study aims to develop a potential evaluation method for urban spatial expansion using remote sensing (RS) and geographic information system (GIS). A multi-criteria evaluation method with several criteria and their weighting values was introduced to evaluate the score and quantification of the potential surface around the existing cities. The six criteria with one geographic factor, slope, and five accessibility factors, time distance from center of the city, national road, interchange of expressway, a big city, and station, were defined for the potential. RS techniques were applied for classification of the actual urban expansion maps between two periods, and GIS functions were used for score of accessibility criteria with a distance decay function from geographic, road and several point maps, which was developed in this study. The new methodology was applied to a test area, Suwon, between 1986 and 1996. In order to optimize the six weighting values, this study made new findings to search the optimal combination of the weighting values from new methodology, weighted scenario method for intensity order (WSM), combined with intensity order and AHP method, including a trial and error method for sensitivity analysis to make the intensity order. The optimal combination of the weighting values by the new method generated the optimal potential surface, considering spatial trend of urban expansion in the test area.