Browse > Article
http://dx.doi.org/10.7780/kjrs.2017.33.5.3.8

Review of Remote Sensing Studies on Groundwater Resources  

Lee, Jeongho (Division of Natural Resources Conservation, Korea Environment Institute)
Publication Information
Korean Journal of Remote Sensing / v.33, no.5_3, 2017 , pp. 855-866 More about this Journal
Abstract
Several research cases using remote sensing methods to analyze changes of storage and dynamics of groundwater aquifer were reviewed in this paper. The status of groundwater storage, in an area with regional scale, could be qualitatively inferred from geological feature, surface water altimetry and topography, distribution of vegetation, and difference between precipitation and evapotranspiration. These qualitative indicators could be measured by geological lineament analysis, airborne magnetic survey, DEM analysis, LAI and NDVI calculation, and surface energy balance modeling. It is certain that GRACE and InSAR have received remarkable attentions as direct utilization from satellite data for quantification of groundwater storage and dynamics. GRACE, composed of twin satellites having acceleration sensors, could detect global or regional microgravity changes and transform them into mass changes of water on surface and inside of the Earth. Numerous studies in terms of groundwater storage using GRACE sensor data were performed with several merits such that (1) there is no requirement of sensor data, (2) auxiliary data for quantification of groundwater can be entirely obtained from another satellite sensors, and (3) algorithms for processing measured data have continuously progressed from designated data management center. The limitations of GRACE for groundwater storage measurement could be defined as follows: (1) In an area with small scale, mass change quantification of groundwater might be inaccurate due to detection limit of the acceleration sensor, and (2) the results would be overestimated in case of combination between sensor and field survey data. InSAR can quantify the dynamic characteristics of aquifer by measuring vertical micro displacement, using linear proportional relation between groundwater head and vertical surface movement. However, InSAR data might now constrain their application to arid or semi-arid area whose land cover appear to be simple, and are hard to apply to the area with the anticipation of loss of coherence with surface. Development of GRACE and InSAR sensor data preprocessing algorithms optimized to topography, geology, and natural conditions of Korea should be prioritized to regionally quantify the mass change and dynamics of the groundwater resources of Korea.
Keywords
Remote Sensing; DEM; GRACE; Groundwater Storage; InSAR; Displacement;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Abiy, A. Z. and A. M. Melesse, 2017. Evaluation of watershed scale changes in groundwater and soil moisture storage with the application of GRACE satellite imagery data, Catena, 153: 50-60.   DOI
2 Bastiaanssen, W. G. M., M. Menenti, R. A. Feddes, and A. A. M. Holtslag, 1998a. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, Journal of Hydrology, 213: 198-212.
3 Bastiaanssen, W. G. M., H. Pelgrum, J. Wang, Y. Ma, J. F. Moreno, G. J. Roerink, and T. van der Wal, 1998b. A remote sensing surface energy balance algorithm for land (SEBAL). 2. Validation, Journal of Hydrology, 213: 213-229.
4 Becker, M. W., 2006. Potential for Satellite Remote Sensing of Ground Water, Groundwater, 44: 306-318.   DOI
5 Bhanja, S. N., A. Mukherjee, D. Saha, I. Velicogna, and J. S. Famiglietti, 2016. Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India, Journal of Hydrology, 543: 729-738.   DOI
6 Brunner, P., H. J. Hendricks Franssen, L. Kgothang, P. Bauer-Gottwein, and W. Kinzelbach, 2007. How can remote sensing contribute in groundwater modeling, Hydrogeology Journal, 15: 5-18.   DOI
7 Castellazzi, P., R. Marten, D. L. Galloway, L. Longuevergne, and A. Rivera, 2016a. Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations, Groundwater, 54(6): 768-780.   DOI
8 Castellazzi, P., R. Marten, D. L. Galloway, A. Rivera, J. Huang, G. Pavlic, A. I. Calderhead, E. Chaussard, J. Garfias, and J. Salas, 2016b. Groundwater depletion in Central Mexico: Use of GRACE and InSAR to support water resources management, Water Resources Research, 52: 5985-6003.   DOI
9 Chao, N,. Z Wang, W jiang, and D. Chao, 2016. A quantitative approach for hydrological drought characterization in southwestern China using GRACE, Hydrogeology Journal, 24: 893-903.   DOI
10 Chaussard, E., R. Burgmann, M. Shirzaei, E. J. Fielding, and B. Baker, 2014. Predictability of hydraulic head changes and characterization of aquifersystem and fault properties from InSAR-derived ground deformation, Journal of Geophysical Research Solid Earth, 119: 6572-6590.   DOI
11 Chen, J., R. Knight, H. A. Zebker, and W. A. Schreuder, 2016. confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations, Water Resources Research, 52: 3623-3636.   DOI
12 Eamus, D., S. Zolfaghar, R. Villalobos-Vega, J. Cleverly, and A. Huete, 2015. Groundwater-dependent ecosystems: recent insights from satellite and field-based studies, Hydrology and Earth System Sciences, 19: 4229-4256.   DOI
13 Galloway, D. L., 2014. Retrospective of InSAR/DInSAR contributions to hydrology by way of bibliographic search, Proc. of 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, Jul. 13-18, pp.2637-2640.
14 Galloway, D. L. and T. J. Burbey, 2011. Review: Regional land subsidence accompanying groundwater extraction, Hydrogeology Journal, 19: 1459-1486.   DOI
15 Galloway, D. L. and J Hoffmann, 2007. The application of satellite differential SAR interferometrydrived ground displacements in hydrogeology, Hydrogeology Journal, 15(1): 133-154.   DOI
16 Hu, L. and J. J. Jiao, 2015. Calibration of large-scale groundwater flow model using GRACE data: a case study in the Qaidam Basin, China, Hydrogeology Journal, 23: 1305-1317.   DOI
17 Galloway, D. L., K. W. Hudnut, S. E. Ingebritsen, S. P. Phillips, and G. Peltzer, 1998. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California, Water Resources Research, 34(10): 2573-2585.   DOI
18 Henry, C. M., D. M. Allen, and J. Huang, 2011. Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data, Hydrogeology Journal, 19: 741-755.   DOI
19 Hu, K., J. L. Awange, Khandu, E. Forootan, R. Mikosz Goncalves, and K. Fleming, 2017. Hydrogeological characterisation of groundwater over Brazil using remotely sensed and model products, Science of the Total Environment, 600: 372-386.
20 Huang, J., J. Halpenny, W. van der Wal, C. Klatt, T. S. James, and A. Rivera, 2012. Detectability of groundwater storage change within the Great Lakes Water Basin using GRACE, Journal of Geophysical Research, 117(B8): B08401.
21 Lee, S. R., Y. S. Kim, J. W. Lee, J. H. Park, and I. Woo, 2004. Development of a technique for lineament density calculation and its application to groundwater yield, Journal of the Geological Society of Korea, 40(3): 293-304 (in Korean with English abstract).
22 Iqbal, N., F. Hossain, H. Lee, and G. Akhter, 2016. Satellite Gravimetric Estimation of Groundwater storage Variations Over Indus Basin in Pakistan, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9: 3524-3534.   DOI
23 Jaques, A. L., P. Wellman, A. Whitaker, and D. Wyborn, 1997. High-resolution geophysics in modern geological mapping, AGSO Journal of Australian Geology and Geophysics, 17: 159-173.
24 K-Water, 2017. Water and Future: Water and sustainable Development, Ministry of Land, Infrastructure and Transport (MOLIT) .
25 Liesch, T. and M. Ohmer, 2016. Comparison of GRACE data and groundwater levels for the assessment of groundwater depletion in Jordan, Hydrogeology Journal, 24: 1547-1563.   DOI
26 Long, D., X. Chen, B. R. Scanlon, Y. Wada, Y. Hong, V. P. Singh, Y. Chen, C. Wang, Z. Han, and W. Yang, 2016. Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer, Nature Scientific Reports, 6: 24398.   DOI
27 Ministry of Land, Transport and Maritime Affairs (MLTM), 2012. Basic Plan for Groundwater Management, Korea, Ministry of Land, Transport and Maritime Affairs (MLTM).
28 Oh, K., M. Lee, B. Park. J. Lee, and J. Yoon, 2017. Analysis of the Research Trends by environmental Spatial-Information using Text-Mining Technology, Journal of the Korean Association of Geographic Information Studies, 20(1): 113-126 (in Korean with English abstract).   DOI
29 Reeves, J. A., R. Knight, H. A. Zebker, W. A. Schreuder, P. Shanker Agram, and T. R. Lauknes, 2011. High quality InSAR data linked to seasonal change in hydraulic head for an agricultural area in the San Suis Valley, Colorado, Water Resources Research, 47(12): W12510.
30 Park, B, K. Oh, J. Lee, J. Yoon, S. K. Lee, and M. Lee, 2017. A study on Environmental Research Trends by Information and Communication Technologies using Text-Mining Technology, Korean Journal of Remote Sensing, 33(1): 189-199 (in Korean with English abstract).   DOI
31 Richey, A. S., B. F. Thomas, M. Lo, J. J. S. Famiglietti, S. Swenson, and M. Rodell, 2015a. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework, Water Resources Research, 51: 5198-5216.   DOI
32 Richey, A. S., B. F. Thomas, M. Lo, J. T. Reager, J. S. Famiglietti, K. Voss, S. Swenson, and M. Rodell, 2015b. Quantifying renewable groundwater stress with GRACE, Water Resources Research, 51: 5217-5238.   DOI
33 Rodell, M., P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J. K. Entin, J. P. Walker, D. Lohmann, and D. Toll, 2004. The Global Land Data Assimilation System, Bulletin of American Meteorological Society, 85(3): 381-394.   DOI
34 Rodell, M., J. Chen, H. Kato, J. S. Famiglietti, J. Nigro, and C. R. Wilson, 2007. Estimating groundwater storage changes in the Mississippi River Basin (USA) using GRACE, Hydrogeology Journal, 15: 159-166.   DOI
35 Rodell, M., I. Velicogna, and J. S. Famiglietti, 2009. Satellite-based estimates of groundwater depletion in India, Nature, 460: 999-1002.   DOI
36 Bear, J., 1979. Hydraulics of Groundwater, McGrow-Hill, New York, USA
37 Roerink, G. J., Z. Su, and M. Menenti, 2000. S-SEBI: A Simple Remote Sensing Algorithm to Estimate the Surface Energy Balance, Physics and Chemistry of the Earth Part B Hydrology Oceans and Atmosphere, 25: 147-157.   DOI
38 Wang, H., L. Kgotlhang, and W. Kinzelbach, 2008. Using Remote Sensing Data to Model Groundwater Recharge Potential in Kaanye region, Botswana, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B8): 751-756.
39 Wang, K., P. Wang, Z. Li, M. Cribb, and M. Sparrow, 2007. A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature, Journal of Geophysical Research Atmospheres, 112(D15): D15107.   DOI
40 World Economic Forum, 2011. World Economic Forum Annual Report 2007-2008, World Economic Forum.