• Title/Summary/Keyword: Sensible heat storage

Search Result 52, Processing Time 0.021 seconds

A Study of Heat Storage System with Phase Change Material - Inward Melting and Solidification in a Horizontal Cylinder - (상변화물질을 이용한 잠열축열조에 관한 기초 연구 - 수평원관내에서의 내향용융 및 응고열전달 실험 -)

  • Kim, I.G.;Cho, N.C.;Kim, J.G.;Lee, C.M.;Yim, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.4
    • /
    • pp.319-329
    • /
    • 1989
  • Heat transfer phenomena during inward melting and solidification process of the phase change material were studied expertimentally. The phase change medium was 99% pure n-docosane paraffin ($C_{22}H_{46}$). The solid-liquid interface motion during phase change was recorded photographically. Measurements were made on the temperature, the solid-liquid interface, the melted or frozen mass and the various energy components stored or extracted from the cylinder wall. For melting, the experimental results reaffirmed the dominant role played by the conduction at an early stage, by the natural convection at longer time. For solidification, natural convection effects in the superheated liquid were modest and were confined to short freezing time. Although the latent energy is the largest contributor to the total stored or extracted energy, the aggregate sensible energies can make a significant contribution, especially at large cylinder wall superheating or subcooling, large initial phase change material subcooling or superheating.

  • PDF

Study on the Latent Heat Characteristics of the Organic Compound, $C_{28}H_{58}$ and the Inorganic Compound, $CH_3COONa{\cdot}3H_2O$ (유기잠열재, $C_{28}H_{58}$과 무기잠열재, $CH_3COONa{\cdot}3H_2O$의 잠열특성연구)

  • Song, Hyun-Kap;Ryou, Young-Sun
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.53-61
    • /
    • 1991
  • In this research, Octacosane($C_{28}H_{58}$) and Sodium Acetate Trihydrate($CH_3COONa{\cdot}3H_2O$) were selected as latent heat storage materials to store off-peak electricity or waste heat of an industrial plant. Experimental analyses were performed in terms of the variation of phase change temperature and latent heat, phase change stability for the long term utilization. The results were as follows. 1. The phase change temperatures of industrial grade Octacosane and Sodium Acetate Trihydrate were $60.7^{\circ}C$ and $57.4^{\circ}C$, the latent heat were 60.6kcal/kg and 51.1kcal/kg respectively. 2. The latent heat quantity of Octacosane was decreased with the increasing number of phase change cycles. It decreased from 60.6kcal/kg to 47.2kcal/kg upto 200 cycles and then no variation was observed after 200 cycles. 3. To prevent the supercooling of Sodium Acetate Trihydrate, the nucleating agent, Sodium Pyrophosphate Decahydrate of 3 wt% was added, and then the supercooling temperature (Tm-Tsc) was decreased from $25.7^{\circ}C$ to $1^{\circ}C$. The phase separation was disappeared by the addition of CMC-Na of 3 wt% as a thickener. It was found that the optimal quantity of nucleating agent and thickener was 4wt% considering the stability of SAT as a latent heat storage material. 4. The phase change temperature of Sodium Acetate Trihydrate($CH_3COONa{\cdot}3H_2O$) was adjusted from 57.4 to $46.2^{\circ}C$ by the addition of UREA. And then the latent heat quantity was decreased from 51.1 to 38.3kcal/kg. 5. When the heat storage capacities between the sensible and latent heat storage materials were analyzed and compared in heating process from 30 to $90^{\circ}C$, the heat storage capacity of Octacosane was 2.45 times larger than water and 12.5 times than granite at $60.7^{\circ}C$, and the heat storage capacity of Sodium Acetate Trihydrate was 2.53 times larger than water and 12.91 times than granite at $57.4^{\circ}C$.

  • PDF

Effect of the Array Type of Heat Exchangers on Performance of Refrigerated Warehouse for Utilization of LNG Cold Energy (LNG 냉열활용을 위한 열교환기의 배열 형태가 냉동창고 성능에 미치는 연구)

  • HAN, DANBEE;KIM, YUNJI;BYUN, HYUNSEUNG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.282-288
    • /
    • 2019
  • When liquefied natural gas (LNG) is vaporized to form natural gas for industrial and household consumption, a tremendous amount of cold energy is transferred from LNG to seawater as a part of the phase-change process. This heat exchange loop is not only a waste of cold energy, but causes thermal pollution to coastal fishery areas by dumping the cold energy into the sea. This project describes an innovative new design for reclaiming cold energy for use by cold storage warehouses (operating in the 35 to $62^{\circ}C$ range). Conventionally, warehouse cooling is done by mechanical refrigeration systems that consume large amounts of electricity for the maintenance of low temperatures. Here, a closed loop LNG heat exchange system was designed (by simulator) to replace mechanical or vapor-compression refrigeration systems. The software PRO II with PROVISION V9.4 was used to simulate LNG cold energy, gas re-liquefaction, and the vaporized process under various conditions. The effects on sensible and latent heats from changes to the array type of heat exchangers have been investigated, as well as an examination of the optimum.

Experimental Study on the Effective Use of Thermally Stratified Hot Water Storage System (열성층 온수저장시스템의 효율적 이용에 관한 실험적 연구)

  • Pak, Ee-Tong
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.45-52
    • /
    • 1993
  • The benefits of thermal stratification in sensible heat storage were investigated for residential solar applications. The effect of increased thermal useful efficiency of hot water stored in an actual storage tank due to stratification has been discussed and illustrated through experimental data and computer simulation, which were taken by changing dynamic and geometric parameters. When the flow rate was 8 liter/min and ${\Delta}T=40^{\circ}C$ was $40^{\circ}C$, the useful efficiency(${\eta}_u$) was about 90% in case of using a distributor, but not using a distributor the useful efficiency(${\eta}_u$) was about 82%. So these kinds of distributor would be recommendable for a hot water storage system and residential solar energy application to increase useful efficiency(${\eta}_u$). In the case of the uniform circular distributor, when the flow rate was 8 liter/min partial mixing was decreased and a stable stratification was obtained. Furthermore, if the distrbutor was manufactured so that the flow is to be the same from all perforations in order to enhance stratification, it might be predicted that further stable stratification and higher useful efficiency(${\eta}_u$) are obtainable.

  • PDF

Temporal and spatial distributions of heat fluxes in the East Sea(Sea of Japan) (東海熱收支 의 時.空間的인 分布)

  • 박원선;오임상
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.91-115
    • /
    • 1995
  • Air-sea heat fluxes in the East Sea were estimated from the various ship's data observed from 1961 to 1990 and the JMA buoy #6 data from 1976 to 1985. The oceanic heat transport in the sea was also determined from the fluxes above and the heat storage rate of the upper layer of 200m from the sea surface. In winter, The incoming solar radiation is almost balanced with the outgoing longwave radiation. but the sea loses her heat through the sea surface mainly due to the latent and sensible heat fluxes. The spatial variation of the net surface heat flux is about 100 Wm/SUP -2/, and the maximum loss of heat is occurred near the Tsugaru Strait. There are also lots of heat losses in the southern part of the East Sea, Korea Strait and Ulleung Basin. Particularly, the heat strong loss in the south-western part of the sea might be concerned with the formation of her Intermediate Homogeneous Water. In summer, the sea is heated up to about 120∼140 Wm/SUP -2/ sue to strong incoming solar radiation and weak turbulent heat fluxes and her spatial variation is only about 20 Wm/SUP -2/. The oceanic heat flux is positive in the southeasten part f the sea and the magnitude of the flux is larger than that of the net surface heat flux. This shows the importance of the area. In the southwestern part of the sea, however, the oceanic heat flux is negative. This fact implies cold water inflow, the North Korean Cold Water. The sigh of net surface heat flux is changed from negative to positive in March and from positive to negative in September. The heat content in the upper surface 200 m from the sea surface reaches its minimum in March and maximum in October. The annual variation of the net surface heat flux is 580 Wm/SUP -2/ in southwestern part of the sea. The annual mean values of net surface heat fluxes are negative, which mean the net heat transfer from the sea to the atmosphere. The magnitude of the flux is about 130 Wm/SUP -2/ near the Tsugaru Strait. The net surface fluxes in the Korea Strait and the Ulleung Basin are relatively larger than those of the rest areas. The spatial mean values of surface heat fluxes from 35$^{\circ}C$ to 39$^{\circ}$N are 129, -90, -58, and -32 Wm/SUP -2/ for the incoming solar radiation, latent hear flux, outgoing longwave radiation, and sensible heat flux, respectively.

  • PDF

Comparison of Surface Fluxes Based on Landuse Characteristics Near Gangjeong-Goryeong Weir of the Nakdong River (낙동강 강정고령보에서 관측된 플럭스의 지표면에 따른 특성 비교)

  • Kahng, Keumah;Koo, Hae-Jung;Byon, Jae-Young;Park, Young-San;Jung, Hyun-Sook
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.561-574
    • /
    • 2013
  • This study investigates energy fluxes measured near Gangjeong-Goryeong Weir of the Nakdong River of South Korea for more than a year, from July 2011 to September 2012, in order to analyze the applicability of the data for future impact analyses. Each of the two study sites is located in a rural area, surrounded by agricultural fields, and an urban industrial area. Sensible and latent heat fluxes are analyzed according to the wind direction. In the summertime, when the wind blows from the river, sensible heat tends to decrease and latent heat tends to increase at both sites. This result is considered to be caused by moisture transfer from the river. Bowen ratio, energy balance closure, momentum flux, and stability are analyzed as well. The Bowen ratio of the rural agricultural site turns out higher than that of the urban site regardless of the season. The energy balance closure is higher at the agricultural site compared to the urban area, which is mainly due to exclusion of the storage term calculation at the urban site. The momentum flux is greater at the urban site both in winter and summer. The instability lasts longer during daytime and in the summertime, when there is a strong turbulence. The data from these sites are appropriate to be used in analyzing the impact of river in surrounding areas for future studies.

Measurements of Wet Canopy Evaporation in Forests: A Review (산림에서의 젖은 군락 증발 관측: 고찰)

  • Kwon, Hyo-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.56-68
    • /
    • 2011
  • Wet canopy evaporation ($E_{WC}$) has been recognized as a significant component of total evapotranspiration, especially in forests and therefore it is critical to accurately assess $E_{WC}$ to understand forest hydrological cycle. In this review, I focused on the measurement methods and evaluating the magnitudes of $E_{WC}$ at diverse forest types (e.g., deciduous, coniferous, mixed, and rain forests). I also present the general issues to be considered for $E_{WC}$ measurements. The commonly used measurement methods for $E_{WC}$ include the water balance, energy balance, and the Penman-Monteith (PM) methods. The magnitudes of $E_{WC}$ ranged from 5 to 54% of precipitation based on the literature review, showing a large variation even for a similar forest type possibly related to canopy structure, rainfall intensity, and other meteorological conditions. Therefore, it is difficult to draw a general conclusion on the contribution of $E_{WC}$ to evapotranspiration from a particular forest type. Errors can arise from the measurements of precipitation (due to varying wind effect) and throughfall (due to spatial variability caused by canopy structure) for water balance method, the measurements of sensible heat flux and heat storage for energy balance method, and the estimation of aerodynamic conductance and unaccounted sensible heat advection for the PM method. For a reliable estimation of $E_{WC}$, the combination of ecohydrological and micrometeorological methods is recommended.

Errors in Net Ecosystem Exchanges of CO2, Water Vapor, and Heat Caused by Storage Fluxes Calculated by Single-level Scalar Measurements Over a Rice Paddy (단일 높이에서 관측된 저장 플럭스를 사용할 때 발생하는 논의 이산화탄소, 수증기, 현열의 순생태계교환량 오차)

  • Moon, Minkyu;Kang, Minseok;Thakuri, Bindu Malla;Lee, Jung-Hoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.227-235
    • /
    • 2015
  • Using eddy covariance method, net ecosystem exchange (NEE) of $CO_2$ ($F_{CO_2}$), $H_2O$ (LE), and sensible heat (H) can be approximated as the sum of eddy flux ($F_c$) and storage flux term ($F_s$). Depending on strength and distribution of sink/source of scalars and magnitude of vertical turbulence mixing, the rates of changes in scalars are different with height. In order to calculate $F_s$ accurately, the differences should be considered using scalar profile measurement. However, most of flux sites for agricultural lands in Asia do not operate profile system and estimate $F_s$ using single-level scalars from eddy covariance system under the assumption that the rates of changes in scalars are constant regardless of the height. In this study, we measured $F_c$ and $F_s$ of $CO_2$, $H_2O$, and air temperature ($T_a$) using eddy covariance and profile system (i.e., the multi-level measurement system in scalars from eddy covariance measurement height to the land surface) at the Chengmicheon farmland site in Korea (CFK) in order to quantify the differences between $F_s$ calculated by single-level measurements ($F_s_{-single}$ i.e., $F_s$ from scalars measured by profile system only at eddy covariance system measurement height) and $F_s$ calculated by profile measurements and verify the errors of NEE caused by $F_s_{-single}$. The rate of change in $CO_2$, $H_2O$, and Ta were varied with height depending on the magnitudes and distribution of sink and source and the stability in the atmospheric boundary layer. Thus, $F_s_{-single}$ underestimated or overestimated $F_s$ (especially 21% underestimation in $F_s$ of $CO_2$ around sunrise and sunset (0430-0800 h and 1630-2000 h)). For $F_{CO_2}$, the errors in $F_s_{-single}$ generated 3% and 2% underestimation of $F_{CO_2}$ during nighttime (2030-0400 h) and around sunrise and sunset, respectively. In the process of nighttime correction and partitioning of $F_{CO_2}$, these differences would cause an underestimation in carbon balance at the rice paddy. In contrast, there were little differences at the errors in LE and H caused by the error in $F_s_{-single}$, irrespective of time.

Numerical Modeling for the Effect of High-rise Buildings on Meteorological Fields over the Coastal Area Using Urbanized MM5 (중/도시규모 기상모델을 이용한 고층건물군이 연안도시기상장에 미치는 영향 수치모델링)

  • Hwang, Mi-Kyoung;Oh, In-Bo;Kim, Yoo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.495-505
    • /
    • 2012
  • Modeling the effects of high-rise buildings on thermo-dynamic conditions and meteorological fields over a coastal urban area was conducted using the modified meso-urban meteorological model (Urbanized MM5; uMM5) with the urban canopy parameterization (UCP) and the high-resolution inputs (urban morphology, land-use/land-cover sub-grid distribution, and high-quality digital elevation model data sets). Sensitivity simulations was performed during a typical sea-breeze episode (4~8 August 2006). Comparison between simulations with real urban morphology and changed urban morphology (i.e. high-rise buildings to low residential houses) showed that high-rise buildings could play an important role in urban heat island and land-sea breeze circulation. The major changes in urban meteorologic conditions are followings: significant increase in daytime temperature nearly by $1.0^{\circ}C$ due to sensible heat flux emitted from high density residential houses, decrease in nighttime temperature nearly by $1.0^{\circ}C$ because of the reduction in the storage heat flux emitted from high-rise buildings, and large increase in wind speed (maximum 2 m $s^{-1}$) during the daytime due to lessen drag-force or increased gradient temperature over coastal area.

A Study on the liquid Type Solar Heating System (액체식 태양열난방계통에 관한 연구)

  • Nam, Pyong-Woo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.8 no.4
    • /
    • pp.221-236
    • /
    • 1979
  • The three years Performance of a liquid type solar heating system has been determined for a system which has been determined for a system which has been operating continuously since 1976 in Seoul with no serious maintenance. A flat plate collector is used to transform incident solar radiation into thermal energy. This energy is stored if the form of sensible energy and used as needed to supply the space heating loads. An electric auxiliary heaters are provided to supply energy for space heating load when the energy in the storage tank is depleted. The ratio of useful collected solar heat divided by the total solar radiation on the collector was obtained about 84 per cent. It is also obtained the relation between ratio of solar collector area to the heating area and the ratio of useful collected solar energy to the heating load for the useful design data. A comparison between the measured and simulated results with the solar space heating system is described. Hour by hour simulation is made on unsteady state basis using the system parameters and meteorological data at the experiment site. The result of comparison turned out satisfactory for the solar heating system, though the simulation was formed somewhat higher than by experimental.

  • PDF