Browse > Article
http://dx.doi.org/10.5532/KJAFM.2010.13.2.056

Measurements of Wet Canopy Evaporation in Forests: A Review  

Kwon, Hyo-Jung (National Center for Agro-Meteorology, Seoul National University)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.13, no.2, 2011 , pp. 56-68 More about this Journal
Abstract
Wet canopy evaporation ($E_{WC}$) has been recognized as a significant component of total evapotranspiration, especially in forests and therefore it is critical to accurately assess $E_{WC}$ to understand forest hydrological cycle. In this review, I focused on the measurement methods and evaluating the magnitudes of $E_{WC}$ at diverse forest types (e.g., deciduous, coniferous, mixed, and rain forests). I also present the general issues to be considered for $E_{WC}$ measurements. The commonly used measurement methods for $E_{WC}$ include the water balance, energy balance, and the Penman-Monteith (PM) methods. The magnitudes of $E_{WC}$ ranged from 5 to 54% of precipitation based on the literature review, showing a large variation even for a similar forest type possibly related to canopy structure, rainfall intensity, and other meteorological conditions. Therefore, it is difficult to draw a general conclusion on the contribution of $E_{WC}$ to evapotranspiration from a particular forest type. Errors can arise from the measurements of precipitation (due to varying wind effect) and throughfall (due to spatial variability caused by canopy structure) for water balance method, the measurements of sensible heat flux and heat storage for energy balance method, and the estimation of aerodynamic conductance and unaccounted sensible heat advection for the PM method. For a reliable estimation of $E_{WC}$, the combination of ecohydrological and micrometeorological methods is recommended.
Keywords
Evaporation; Wet canopy; Water balance; Energy balance; Penman-Monteith; Forest;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Valente, F., J. S., David, and J. H. C. Gash, 1997: Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models. Journal of Hydrology 190, 141-162.   DOI
2 van der Tol, C., J. H. C. Gash, S. J. Grant, D. D. McNeil, and M. Robinson, 2003: Average wet canopy evaporation for a Sitka spruce forest derived using the eddy correlation-energy balance technique. Journal of Hydrology 276, 12-19.   DOI
3 Vugts, H. F., M. J. Waterloo, F. J. Beekman, K. F. Frumau, and L. A. Bruijnzeel, 1993: The temperature variance method, a powerful tool in the estimation of actual evapotranspiration rates. Hydrology of Warm Humid Regions, Proceedings of the Yokohama Symposium, International Association of Hydrological Sciences Publication 216, 251-260.
4 Vermimmen, R. R. E., L. A. Bruijnzeel, A. Romdoni, and J. Proctor, 2007: Rainfall interception in three contrasting lowland rain forest types in Central Kalimantan, Indonesia. Journal of Hydrology 340, 217-232.   DOI
5 Schellekens, J., L. A. Bruijnzeel, F. N. Scatena, N.J. Bink, and F. Holwerda, 2000: Evaporation from a tropical rain forest, Luquillo Experimental Forest, eastern Puerto Rico. Water Resources Research 36, 2183-2196.   DOI
6 Shachnovich, Y., P. R. Berliner, and P. Bar, 2008: Rainfall interception and spatial distribution of throughfall in a pine forest planted in an arid zone. Journal of Hydrology 349, 168-177.   DOI
7 Staelens, J., A. De Schrijver, K. Verheyen, and N. E. C. Verhoest, 2008: Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology. Hydrological Processes 22, 33-45.   DOI
8 Silberstein, R., A. Held, T. Hatton, N. Viney, and M. Sivapalan, 2001: Energy balance of a natural jarrah (Eucalyptus marginata) forest in Western Australia: measurements during the spring and summer. Agricultural and Forest Meteorology 109, 79-104.   DOI
9 Singh, R. P., 1987: Rainfall interception by Pinus Wallichiana plantation in temperate region of Himachal Pradesh, India. Indian Forester 113, 559-566.
10 Sraj, M., M. Brilly, and M. Mikos, 2008: Rainfall interception by two deciduous Mediterranean forests of contrasting stature in Slovenia. Agricultural and Forest Meteorology 148, 121-134.   DOI
11 Stewart, J. B., 1977: Evaporation from the wet canopy of a pine forest. Water Resources Research 13, 915-921.   DOI
12 Tillman, J. E., 1972: The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. Journal of Applied Meteorology 11, 783-792.   DOI
13 Thom, A. S., 1975: Momentum, mass and heat exchange of plant communities. In: Monteith, J. L. (Ed.), Vegetation and the Atmosphere, Principles, Academic Press, London, UK pp 57-109.
14 Lloyd, C. R., and A., De O. Marques, 1988: Spatial variability of throughfall and stemflow measurements in Amazonian rainforest. Agricultural and Forest Meteorology 42, 63-73.   DOI
15 Monteith, J. L., 1965: Evaporation and environment. Symposia Society for Experimental Biology 19, 205-224.
16 Johnson, R., 1990: The interception, throughfall and stemflow in a forest in highland Scotland and the comparison with other upland forests in the UK. Journal of Hydrology 118, 281-287.   DOI
17 Min, H. J., and B. M. Woo, 1995: Throughfall, stemflow, and interception loss at Pinus taeda and Pinus densiflora stands. Journal of Korean Forest Society 84, 502-516. (in Korean with English abstract)
18 Michiles, A. A. S., and R. Gielow, 2008: Above-ground thermal energy storage rates, trunk heat fluxes and surface energy balance in a central Amazonian rainforest. Agricultural and Forest Meteorology 148, 917-930.   DOI
19 Muzylo, A., P. Llorens, F. Valente, J. J. Keizer, F. Domingo, and J. H. C. Gash, 2009: A review of rainfall interception modeling. Journal of Hydrology 370, 191-208.   DOI
20 Oliphant, A. J., C. S. B. Grimmond, H. N. Zutter, H. P. Schmid, H.-B. Su, S. L. Scott, B. Offerle, J. C. Randolph, and J. Ehman, 2004: Heat storage and energy balance fluxes for a temperate deciduous forest. Agricultural and Forest Meteorology 126, 185-201.   DOI
21 Pypker, G. T., B. J. Bond, T. E. Link, D. Marks, and M. H. Unsworth, 2005: The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old-growth Douglas-fir forest. Agricultural and Forest Meteorology 130, 113-129.   DOI
22 Rutter, A. J., A. J. Morton, and P. C. Robins, 1975: A predictive model of rainfall interception in forest. II. Generalization of the model and comparison with observations in some coniferous and hardwood stands. Journal of Applied Ecology 12, 367-380.   DOI
23 Kim, K. H., J. Jun, J. Yoo, and Y. Jeong, 2005: Troughfall, stemflow and interception loss of the natural old-growth deciduous and planted young coniferous in Gwangneung and the rehabilitated young minxed Forest in Yangju, Gyeonggido(I) - with a special reference on the results of measurement -. Journal of Korean Forest Society 94, 488-495. (in Korean with English abstract)
24 Kang, M., H. Kwon, J.-H. Lim, and J. Kim, 2010: On estimating wet canopy evaporation from deciduous forest in Korea. The International Conference of 2nd Hydrology delivers Earth System Science to Society, The University of Tokyo, Japan, June 22-25, 2010.
25 Kang, M., H. Kwon, J.-H. Lim, and J. Kim, 2010: On estimating wet canopy evaporation from deciduous and coniferous forest in Korea. Journal of Hydrological Metrology (in revision).
26 Kim, K. B., and B. M. Woo, 1988: Study on rainfall interception loss from canopy in forest (I). Journal of Korean Forest Society 77, 331-337. (in Korean with English abstract)
27 Klassen, W., F. Bosveld, and E. de Water, 1998: Water storage and evaporation as constituents of rainfall interception. Journal of Hydrology 212-213, 36-50.   DOI
28 Lankreijer, H. J. M., M. J. Hendriks, and W. Klaassen, 1993: A comparison of models simulating rainfall interception of forests. Agricultural and Forest Meteorology 64, 187-199.   DOI
29 Lee, D. K., G. T., Kim, K. Y. Joo, Y. S. Kim, 1997: Throughfall, stemfall and rainfall interception loss in Pinus koraiensis Sieb. et Zucc., Larix leptolepis (Sieb. et Zucc.) Gordon and Quercus species stand at Kwangju-Gun, Kyunggido. Journal of Korean Forest Society 86, 200-207. (in Korean with English abstract)
30 Lindroth, A., 1991: Reduced Loss in Precipitation Measurements Using a New Wind Shield for Raingages. Journal of Atmospheric and Oceanic Technology 8, 444-451.   DOI
31 De Bruin, H. A. R., W., Kohsiek, and B. J. J. M., van den Hurk, 1993: A Verification of Some Methods to Determine the Fluxes of Momentum, Sensible Heat and Water Vapour Using Standard Deviation and Structure Parameter of Scalar Meteorological Quantities. Boundary-Layer Meteorology 63, 231-257.   DOI
32 Dingman, S., 2002: Physical Hydrology. Prentice Hall, Upper Saddle River. c.
33 Finnigan, J., 2006: The storage term in eddy flux calculations. Agricultural and Forest Meteorology 136, 108-113.   DOI
34 Gash, J. H. C., 1979: An analytical model of rainfall interception by forests. Quarterly Journal of the Royal Meteorological Society 105, 43-55.   DOI
35 Gash, J. H. C., C. R. Lloyd, and G. Lachaud, 1995: Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology 170, 79-86.   DOI
36 Gash, J. H. C., F. Valente, and J. S. David, 1999: Estimates and measurements of evaporation from wet, sparse pine forest in Portugal. Agricultural and Forest Meteorology 94, 149-158.   DOI
37 Gash, J. H. C., I. R. Wright, and C. R. Lloyd, 1980: Comparative estimates of interception loss from three coniferous forests in Great Britain. Journal of Hydrology 48, 89-105.   DOI
38 Herbst, M., P. T. W. Rosier, D. D. McNeil, R. J. Harding, and D. J. Gowing, 2008: Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest. Agricultural and Forest Meteorology 148, 1655-1667.   DOI
39 Horton, R. E., 1919: Rainfall interception. U.S. Monthly Weather Review. 47.
40 Herrington, L.P., 1969: On temperature and heat flow in tree stems. Yale University, School of Forestry and Envornmental Bulletin, 73.
41 Asdak, C., P. G. Jarvis, and P. V. Gardingen, 1998: Evaporation of intercepted precipitation based on an energy balance in unlogged and logged forest areas of central Kalimantan, Indonesia. Agricultural and Forest Meteorology 92, 173-180.   DOI
42 Crockford, R. H., and D. P. Richardson, 2000: Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrological Processes 14, 2903-2920.   DOI
43 De Bruin, H. A. R., and O. K. Hartogensis, 2005: Variance method to determine fluxes of momentum and sensible heat in the stable atmospheric surface layer. Boundary-Layer Meteorology 116, 385-392.   DOI
44 Davis, T. S., J. H. C. Gash, F. Valente, J. S. Pereira, M. I. Ferreira, and J. S. David, 2006: Rainfall interception by an isolated evergreen oak tree in a Mediterranean savannah. Hydroogical Processes 20, 2713-2726.   DOI