• Title/Summary/Keyword: Sensible heat storage

Search Result 52, Processing Time 0.027 seconds

Consideration on the T-history Method for Measuring Heat of Fusion of Phase Change Materials (PCM의 잠열측정을 위한 T-history법에 대한 고찰)

  • 박창현;최주환;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1223-1229
    • /
    • 2001
  • Though conventional calorimetry methods such as differential scanning calorimetry (DSC) and differential thermal analysis (DTA) are used generally in measuring heat of fusion, T-history method has the advantages of a simple experimental apparatus and no requirements of sampling process, which is particularly useful for measuring thermal properties of inhomogeneous phase change materials (PCMs) in sealed tubes. However, random criteria (a degree of supercooling) used in selecting the range of latent heat release and neglecting sensible heat during the phase change process can cause significant errors in determining the heat of fusion. In the present study, it was shown that a 40% discrepancy exists between the original T-history and the present methods when analyzing the same experimental data. As a result, a reasonable modification to the original T-history method is proposed.

  • PDF

Improvement of the T-history Method to Measure Heat of Fusion for Phase Change Materials

  • Hong, Hi-Ki;Park, Chang-Hyun;Choi, Ju-Hwan;Peek, Jong-Hyeon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.1
    • /
    • pp.32-39
    • /
    • 2003
  • Though conventional calorimetry methods such as differential scanning calorimetry and differential thermal analysis are used generally in measuring heat of fusion, T-history method has advantages of a simple experimental apparatus and no requirements of sampling process, which is particularly useful for measuring thermophyical properties of in-homogeneous phase change materials in sealed tubes. However, the degree of supercooling used in selecting a range of latent heat release and neglecting sensible heat during the phase change process can cause significant errors in determining the heat of fusion. In the present study, it was shown that a 40% discrepancy exists between the original T-history and the present methods when analyzing the same experimental data. As a result, a reasonable modification to the original T-history method is proposed.

Investigation of amorphous material with ice for cold thermal storage

  • Kim, Jhongkwon;Park, Hyunjun;Bae, Junhyuk;Jeong, Sangkwon;Chang, Daejun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.40-44
    • /
    • 2019
  • This study investigates mixtures of water and cryoprotectant agents (CPAs) to store high-grade cold energy. Although water is an ideal material for a cold thermal storage (CTS) due to its high specific heat, undesirable volume expansion may cause structural stresses during freezing. The volume expansion can be alleviated by adding the CPAs to water. However, the CPA aqueous solutions not only have different thermal properties but also transit to amorphous state different from pure water. Therefore, these characteristics should be considered when using them as material of the CTS. In experiments, glycerol and dimethyl sulfoxide (DMSO) are selected as the candidate CPA. The volume expansion of the solution is measured by an in-situ strain gauge in low temperature region. The specific heat capacity of the solution is also measured by differential scanning calorimetry (DSC). Both the amount of volume expansion and the specific heat capacity of the CPA aqueous solution decrease in the case of higher concentration of CPA. These characteristics should be contemplated to select optimal aqueous solution for CTS for liquid air energy storage system (LAES). The CPA solutions have advantages of having wide temperature range to utilize the latent heat of water and higher sensible heat of the CPA. The CPA solutions which can satisfy the allowable stress of the structure are determined. Consequently, among the CPA solutions investigated, DMSO 20% w/w solution is the most suitable for the CTS.

Spatial Typification based on Heat Balance for Improving Thermal Environment in Seoul (열수지를 활용한 서울시 열환경 개선을 위한 공간 유형화)

  • Kwon, You Jin;Ahn, Saekyul;Lee, Dong Kun;Yoon, Eun Joo;Sung, Sunyong;Lee, Kiseung
    • Journal of Korea Planning Association
    • /
    • v.53 no.7
    • /
    • pp.109-126
    • /
    • 2018
  • The purpose of this study is to identify the spatial types for thermal environment improvement considering heat flux and its spatial context through empirical orthodox formulas. First, k-means clustering was used to classify values of three kinds of heat flux - latent, sensible and storage heat. Next, from the k-means clustering, we defined a type of thermal environment (type LHL) where improvement is needed for more comfortable and pleasant thermal environment in the city, among the eight types. Lastly, we compared and analyzed the characteristics of each classified thermal environmental types based on land cover types. From the study, we found that the ratio of impervious surfaces, roads, and buildings of the type LHL is higher than those of the type HLH (relatively thermal comfort environment). In order to improve the thermal environment, the following contents are proposed to urban planners and designers depending on the results of the study. a) Increase the green zone rate by 10% to reduce sensible heat; b) Reduce the percentage of impermeable surfaces and roads by 10% ; c) Latent heat increases when water and green spaces are expanded. This study will help to establish a minimum criterion for a land cover rate for the improvement of the urban thermal environment and a standard index for the thermal environmental improvement can be derived.

A Study on Thermally Stratied Hot Water Storage Tank in A Solar Heating System (태양열 난방 시스템에 적용되는 축열조의 성층화에 관한 연구)

  • Hong, Hi-Ki;Kim, Hyo-Kyung
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.1
    • /
    • pp.87-96
    • /
    • 1986
  • An experiment on the devices that enchance the stratification of storage tanks in a solar heat ins system has been carried out. The benefits of thermal stratification in sensible heat storage are to increase the system performance such as the collector efficiency or the fraction of the total load supplied by solar energy. Using the diffuser and the distributor as the stratification enchancement device, the expeliments were perfomed in the different condition of diameter and material of the distributor. As a result of experiments, there exists the diameter of distributor in which the stratification is made maximum under certain design and operation condition. Also it was identified that the kind of distributor material influenced the degree of stratification. Comparing the experimental result to the computational results calculated under the same conditions, the node number N(stratification index) was determined. The results of computer simulation that was performed about the actual solar heating system in Seoul for 24 hours show the relative advantage of stratified over well-mixed storage and the significant improvements in system performance.

  • PDF

Thermal Energy Balance Analysis of a Packed Bed for Rock Cavern Thermal Energy Storage (충전층을 이용한 암반공동 열에너지저장시스템의 열에너지 수지 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.241-259
    • /
    • 2013
  • A packed bed thermal energy storage (TES) consisting of solid storage medium of rock or concrete through which the heat transfer fluid is circulated is considered as an attractive alternative for high temperature sensible heat storage, because of the economical viability and chemical stability of storage medium and the simplicity of operation. This study introduces the technologies of packed bed thermal energy storage, and presents a numerical model to analyze the thermal energy balance and the performance efficiency of the storage system. In this model, one dimensional transient heat transfer problem in the storage tank is solved using finite difference method, and temperature distribution in a storage tank and thermal energy loss from the tank wall can be calculated during the repeated thermal charging and discharging modes. In this study, a high temperature thermal energy storage connected with AA-CAES (advanced adiabatic compressed air energy storage) was modeled and analyzed for the temperature and the energy balance in the storage tank. Rock cavern type TES and above-ground type TES were both simulated and their results were compared in terms of the discharging efficiency and heat loss ratio.

Dynamic thermal Design of a 1-ton Class Bio-Hydrogen Production System Simulator Using Industrial Waste Heat and by-Products (산업배열 및 부산물을 활용한 1톤급 바이오수소 생산 시뮬레이터 동적 열설계)

  • Kim, Hyejun;Kim, Seokyeon;Ahn, Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.259-268
    • /
    • 2017
  • This paper proposes a hydrogen-based social economy derived from fuel cells capable of replacing fossil fuels and resolving global warming, It thus provides an entry for developing economically feasible social configurations to make use of bio-hydrogen production systems. Bio-hydrogen production works from the principle that microorganisms decompose water in the process of converting CO to $CO_2$, thereby producing hydrogen. This study parts from an analysis of an existing 157-ton class NA1 bio-hydrogen reactor that identifies the state of feedstock and reactor conditions. Based on this analysis, we designed a 1-ton class bio-hydrogen reactor process simulator. We carried out thermal analyses of biological heat reactions, sensible heat, and heat radiation in order to calculate the thermal load of each system element. The reactor temperature changes were determined by modeling the feed mixing tank capacity, heat exchange, and heat storage tank. An analysis was carried out to confirm the condition of the feed mixing tank, heat exchanger, heat storage tank capacity as well as the operating conditions of the system so as to maintain the target reactor temperature.

Role of Atmospheric Turbulences and Energy Balances in the Atmospheric Surface Layer (접지층에서 대기난류의 역할과 에너지 평형)

  • Kwon, Byung-Hyuk;Kim, Geun-Hoi;Kim, Kwang-Ho;Kang, Dong-Hwan
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • Heat energy exchange is very important processes in the coastal wetland ecosystems. We observed and analyzed the net radiation flux, the sensible heat flux, the latent heat flux and the soil heat flux, which are balanced in the heat energy balance, over a reclaimed land covered with reeds at Goheung, Jeonllanamdo where is horizontally plane. The atmospheric turbulence had been measured in order to estimate the heat transfer during 5 intensive observation periods (IOPs). It was considered that the soil consists of water, fine particles, and vegetation canopy that changes color and density according to the season. We examined the characteristics of the heat flux and the vegetation effect on the air temperature control. It was noted that the heat was transported mainly by latent heat flux in the summer season and the vegetation canopy decreased the daily temperature range due to the heat storage. The air temperature was lower at the IOPs site than near urban area. This showed that the coastal wetland covered with the vegetation control the thermal environment.

  • PDF

A Six-Layer SVAT Model for Energy and Mass Transfer and Its Application to a Spruce(Picea abies [L].Karst) Forest in Central Germany (독일가문비나무(Picea abies [L].Karst)림(林)에서의 Energy와 물질순환(物質循環)에 대(對)한 SLODSVAT(Six-Layer One-Dimensional Soil-Vegetation-Atmosphere-Transfer) 모델과 그 적용(適用))

  • Oltchev, A.;Constantin, J.;Gravenhorst, G.;Ibrom, A.;Joo, Yeong-Teuk;Kim, Young-Chai
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.210-224
    • /
    • 1996
  • The SLODSVAT consists of interrelated submodels that simulate : the transfer of radiation, water vapour, sensible heat, carbon dioxide and momentum in two canopy layers determined by environmental conditions and ecophysiological properties of the vegetation ; uptake and storage of water in the "root-stem-leaf" system of plants ; interception of rainfall by the canopy layers and infiltration and storage of rain water in the four soil layers. A comparison of the results of modeling experiments and field micro-climatic observations in a spruce forest(Picea abies [L].Karst) in the Soiling hills(Germany) shows, that the SLODSVAT can describe and simulate the short-term(diurnal) as well as the long-term(seasonal) variability of water vapour and sensible heat fluxes adequately to natural processes under different environmental conditions. It proves that it is possible to estimate and predict the transpiration and evapotranspiration rates for spruce forest ecosystems on the patch and landscape scales for one vegetation period, if certain meteorological, botanical and hydrological information for the structure of the atmospheric boundary layer, the canopy and the soil are available.

  • PDF

A Simulation for the Stratified Thermal Storage System in Residential Solar Energy Application (주거용 태양열 성층축열시스템의 시뮬레이션)

  • Pak, Ee-Tong;Yoo, Ho-Seon
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.44-52
    • /
    • 1991
  • The benefits of thermal stratification in sensible heat storage systems has been considered and studying by several investigators. In this paper, the basic data which is hard to obtain normally through the experiment were obtainable through the computer simulation. The major objectives of the study were to assess the benefits of stratified storage in residential solar water heating application and to suggest the optimum design parameters. From the computer simulation, following results were obtained. 1. The solar load fraction increases with increasing the number of tank segments. In these simulation, the magnitude of the improvement was about 10%. 2. The solar load fraction increases when the ratio of diameter to height of the tank(H/D) increases to 3, but H/D exceed 3 then, the solar load fraction decreases. In these simulation, the magnitude of the improvement was about 3%. 3. Increasing the collector flow rate slightly improved the performance of the mixed storage system(Node=1). But, for the stratified storage system(Node=N), the solar load fraction increases with decreasing flow rate until the point is reached at which the collector outlet temperature reaches the boiloff limit of $100^{\circ}C$ over some portion of the simulation period.

  • PDF