• 제목/요약/키워드: Semiconductor equipment

검색결과 863건 처리시간 0.025초

비진공 방법에 의한 CIGS/CZTS계 박막 태양전지 제조 (Fabrication of CIGS/CZTS Thin Films Solar Cells by Non-vacuum Process)

  • 유다영;이동윤
    • 한국재료학회지
    • /
    • 제28권12호
    • /
    • pp.748-757
    • /
    • 2018
  • Inorganic semiconductor compounds, e.g., CIGS and CZTS, are promising materials for thin film solar cells because of their high light absorption coefficient and stability. Research on thin film solar cells using this compound has made remarkable progress in the last two decades. Vacuum-based processes, e.g., co-evaporation and sputtering, are well established to obtain high-efficiency CIGS and/or CZTS thin film solar cells with over 20 % of power conversion. However, because the vacuum-based processes need high cost equipment, they pose technological barriers to producing low-cost and large area photovoltaic cells. Recently, non-vacuum based processes, for example the solution/nanoparticle precursor process, the electrodeposition method, or the polymer-capped precursors process, have been intensively studied to reduce capital expenditure. Lately, over 17 % of energy conversion efficiency has been reported by solution precursors methods in CIGS solar cells. This article reviews the status of non-vacuum techniques that are used to fabricate CIGS and CZTS thin films solar cells.

4H-SiC MOSFET기반 ESD보호회로에 관한 연구 (A study on ESD Protection circuit based on 4H-SiC MOSFET)

  • 서정주;도경일;서정윤;권상욱;구용서
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.1202-1205
    • /
    • 2018
  • 본 논문에서는 4H-SiC물질 기반으로 제작된 ggNMOS를 제안하고 전기적 특성을 분석하였다. 4H-SiC는 Wide Band-gap 물질로 Si 물질 보다 면적대비 특성과 고전압 특성이 뛰어나 전력반도체 분야에 주목받고 있다. 제안된 소자는 높은 감내 특성과 Strong snapback 특성을 가진다. 공정은 SiC 공정으로 이루어 졌으며 TLP 측정 장비를 통해 전기적 특성을 분석하였다.

겔 캐스팅 공정을 위한 알루미나 슬러리에서의 첨가제 함량 변화에 따른 겔화특성 평가 (Evaluation of Gelation Characteristics with The Variation of Additive Contents in The Alumina Slurry for Gel Casting Process)

  • 정준기;오창용;하태권
    • 소성∙가공
    • /
    • 제31권5호
    • /
    • pp.290-295
    • /
    • 2022
  • Recently, the use of high-tech ceramic parts in functional electronic parts, automobile parts and semiconductor equipment parts is increasing. These ceramics materials are required to have high reproducibility, reliability, large size and complex shapes. The researchers initiated the work to develop a new shaping method called gel casting, which allows high performance ceramic materials with a complex shape to be produced. The manufacturing process parameters of gel casting include uniform mixing of the initiator, bubble removal, and slip injection. In this study, we analyzed the dispersion and gelation characteristics according to the change in the additive content of the alumina slurry in the gel casting process. The alumina slurry for gel casting was prepared by mixing a solvent, a monomer and a dispersant through a ball mill. Alumina powder and a gelation initiator were added to the mixed solution, and ball milling was performed for 24 hours. A viscosity of 6,435 cps and a stable zeta potential value were obtained under the conditions of alumina powder content of 55 vol% and dispersant 2.0 wt%. After curing for 12 hours by adding aps 0.1wt%, TEMED 0.2wt%, and Monomer 3, 5wt%, it was possible to separate from the molding cup, confirming that the gelation was completed.

전기화학-기계적 평탄화에 관한 연구 동향 분석 (Analysis of Research Trends on Electrochemical-Mechanical Planarization)

  • 이현섭;김지훈;박성민;추동엽
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.213-223
    • /
    • 2021
  • Electrochemical mechanical planarization (ECMP) was developed to overcome the shortcomings of conventional chemical mechanical planarization (CMP). Because ECMP technology utilizes electrochemical reactions, it can have a higher efficiency than CMP even under low pressure conditions. Therefore, there is an advantage in that it is possible to reduce dicing and erosions, which are physical defects in semiconductor CMP. This paper summarizes the papers on ECMP published from 2003 to 2021 and analyzes research trends in ECMP technology. First, the material removal mechanisms and the configuration of the ECMP machine are dealt with, and then ECMP research trends are reviewed. For ECMP research trends, electrolyte, processing variables and pads, tribology, modeling, and application studies are investigated. In the past, research on ECMP was focused on basic research for the development of electrolytes, but it has recently developed into research on tribology and process variables and on new processing systems and applications. However, there is still a need to increase the processing efficiency, and to this end, the development of a hybrid ECMP processing method using another energy source is required. In addition, ECMP systems that can respond to the developing metal 3D printing technology must be researched, and ECMP equipment technology using CNC and robot technology must be developed.

플렉시블 전자회로의 시장동향 및 기판구조에 대한 심층분석 (Market Trends of Flexible Electronic Circuits and Its Intensive Analysis of Substrate Structure)

  • 김영조
    • 한국산업융합학회 논문집
    • /
    • 제26권1호
    • /
    • pp.105-112
    • /
    • 2023
  • We analyze the global market for flexible electronic circuits, technical considerations, and analyze the market for application areas and regions. In the market analysis of the application field, the display field has the greatest influence in terms of market size and annual growth rate, and the OLE D lighting market size is expected to grow by nearly 50% in 2026. The multilayer flexible electronics, which dependently requires the semiconductor technology, has a larger market size than other structures and its growth rate is relatively large, leading the market and will be further analyzed in depth. The market size of multilayer flexible electronics applied to display field is expected to show an annual growth rate of 21.1% from $2.7 billion in 2017 to $9.8 billion in 2026, and the OLED market is expected to grow by 75.2% during the same periods. Recently, as electronic products have been miniaturized and advanced, and robust installation in a small space is required, companies that preoccupy multilayer structure or rigid flexible electronic circuit technology have an advantage in competitiveness, so many companies are trying to obtain this technology. These efforts are systematically supported by many countries because they can achieve mutual growth by strengthening the competitiveness of the application field and the same industry. In the case of Korea, a support system is established, but it is required to expand and activate it, and to localize manufacturing equipment and materials.

GUM 기반 측정불확도의 평가 및 적용에 의한 품질개선 (A Study on Quality Improvement by Evaluation and Application of GUM-based Measurement Uncertainty)

  • 최인수;허선
    • 품질경영학회지
    • /
    • 제51권3호
    • /
    • pp.419-434
    • /
    • 2023
  • Purpose: Measurement results obtained under non-ideal measurement environment conditions may contain uncertain factors. As a result, the reliability of measurement results may be deteriorated. In this study, we tried to find ways to improve quality by evaluating and applying measurement uncertainty based on GUM. Methods: In the flatness measurement of semiconductor parts, uncertainty factors that could occur under actual environmental conditions of workers were derived, and measurement uncertainties were calculated, and methods for minimizing the main factors affecting the measurement results were analyzed. Results: Depending on the part and the coordinate measuring machine, it was shown that the effect of dispersion caused by repeated measurements as type A uncertainty and the effect of the calibration results of equipment as type B uncertainty have the main influence. Conclusion: Depending on the uncertainty factors of type A and type B and the influence of the total expanded uncertainty, the central value and confidence interval of the initial measurement results showed fluctuations. It is considered that analysis and measures for the main uncertainty factors are needed as quality improvement in the industrial field.

납기 위반 및 셋업 최소화를 위한 강화학습 기반의 설비 일정계획 모델 (Machine Scheduling Models Based on Reinforcement Learning for Minimizing Due Date Violation and Setup Change)

  • 유우식;서주혁;김다희;김관호
    • 한국전자거래학회지
    • /
    • 제24권3호
    • /
    • pp.19-33
    • /
    • 2019
  • 최근 제조업체들은 제품의 생산방식이 고도화 되고, 복잡해지면서 생산 장비를 효율적으로 사용하는데 어려움을 겪고 있다. 제조공정의 효율성을 방해하는 대표적인 요인들로는 작업물 종류 변경(job change)으로 인한 작업 준비 비용(Setup Cost) 등이 있다. 특히 반도체/LCD 공정과 같이 고가의 생산 장비를 사용하는 공정의 경우 장비의 효율적인 사용이 매우 중요한데, 상호 충돌하는 의사결정인 납기 준수를 최대화 하는 것과 작업물 종류 변경으로 인한 작업 준비 비용을 최소화 하는 것 사이에서 균형을 유지하는 것은 매우 어려운 일이다. 본 연구에서는 납기와 작업 준비 비용이 있는 병렬기계에서 강화학습을 활용하여 납기 및 셋업 비용의 최소화 목표를 달성하는 일정계획 모델을 개발하였다. 제안하는 모델은 DQN(Deep Q-Network) 일정계획 모델로 강화학습기반의 모델이다. 제안모델의 효율성을 측정하기 위해 DQN 모델과 기존에 개발하였던 심층 신경망 기반의 일정계획 생성기법과 휴리스틱 원칙의 결과를 비교하였다. 비교 결과 DQN 일정계획 생성기법이 심층신경망 방식과 휴리스틱 원칙에 비하여 납기 및 셋업 비용이 적은 것을 확인할 수 있었다.

한국의 그린 비즈니스/IT 실태분석을 통한 추진전략 우선순위 도출에 관한 연구 (Development of Korean Green Business/IT Strategies Based on Priority Analysis)

  • 김재경;최주철;최일영
    • Asia pacific journal of information systems
    • /
    • 제20권3호
    • /
    • pp.191-204
    • /
    • 2010
  • Recently, the CO2 emission and energy consumption have become critical global issues to decide the future of nations. Especially, the spread of IT products and the increased use of internet and web applications result in the energy consumption and CO2 emission of IT industry though information technologies drive global economic growth. EU, the United States, Japan and other developed countries are using IT related environmental regulations such as WEEE(Waste Electrical and Electronic Equipment), RoHS(Restriction of the use of Certain Hazardous Substance), REACH(Registration, Evaluation, Authorization and Restriction of CHemicals) and EuP(Energy using Product), and have established systematic green business/IT strategies to enhance the competitiveness of IT industry. For example, the Japan government proposed the "Green IT initiative" for being compatible with economic growth and environmental protection. Not only energy saving technologies but energy saving systems have been developed for accomplishing sustainable development. Korea's CO2 emission and energy consumption continuously have grown at comparatively high rates. They are related to its industrial structure depending on high energy-consuming industries such as iron and steel Industry, automotive industry, shipbuilding industry, semiconductor industry, and so on. In particular, export proportion of IT manufacturing is quite high in Korea. For example, the global market share of the semiconductor such as DRAM was about 80% in 2008. Accordingly, Korea needs to establish a systematic strategy to respond to the global environmental regulations and to maintain competitiveness in the IT industry. However, green competitiveness of Korea ranked 11th among 15 major countries and R&D budget for green technology is not large enough to develop energy-saving technologies for infrastructure and value chain of low-carbon society though that grows at high rates. Moreover, there are no concrete action plans in Korea. This research aims to deduce the priorities of the Korean green business/IT strategies to use multi attribute weighted average method. We selected a panel of 19 experts who work at the green business related firms such as HP, IBM, Fujitsu and so on, and selected six assessment indices such as the urgency of the technology development, the technology gap between Korea and the developed countries, the effect of import substitution, the spillover effect of technology, the market growth, and the export potential of the package or stand-alone products by existing literature review. We submitted questionnaires at approximately weekly intervals to them for priorities of the green business/IT strategies. The strategies broadly classify as follows. The first strategy which consists of the green business/IT policy and standardization, process and performance management and IT industry and legislative alignment relates to government's role in the green economy. The second strategy relates to IT to support environment sustainability such as the travel and ways of working management, printer output and recycling, intelligent building, printer rationalization and collaboration and connectivity. The last strategy relates to green IT systems, services and usage such as the data center consolidation and energy management, hardware recycle decommission, server and storage virtualization, device power management, and service supplier management. All the questionnaires were assessed via a five-point Likert scale ranging from "very little" to "very large." Our findings show that the IT to support environment sustainability is prior to the other strategies. In detail, the green business /IT policy and standardization is the most important in the government's role. The strategies of intelligent building and the travel and ways of working management are prior to the others for supporting environment sustainability. Finally, the strategies for the data center consolidation and energy management and server and storage virtualization have the huge influence for green IT systems, services and usage This research results the following implications. The amount of energy consumption and CO2 emissions of IT equipment including electrical business equipment will need to be clearly indicated in order to manage the effect of green business/IT strategy. And it is necessary to develop tools that measure the performance of green business/IT by each step. Additionally, intelligent building could grow up in energy-saving, growth of low carbon and related industries together. It is necessary to expand the affect of virtualization though adjusting and controlling the relationship between the management teams.

VOC Analyzer를 이용한 파티클보드로부터 방산되는 휘발성유기화합물의 간이 측정방법 개발 (Development of Simple Test Method using VOC Analyzer to Measure Volatile Organic Compounds Emission for Particleboards)

  • 안재윤;김수민;김진아;김현중;문석중
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권4호
    • /
    • pp.22-30
    • /
    • 2006
  • VOC Analyzer는 톨루엔, 에틸벤젠, 자일렌, 스틸렌 등 4가지 방향족 탄화수소 가스를 측정하기 위한 휴대용 장비이다. VOC Analyzer는 반도체 가스 센서가 존재하는데 이 센서는 가스크로마토그래프에 필요했던 캐리어 가스를 필요 없게 하였다. 게다가 반도체 가스 센서는 가스 성분에 대해 초고감도이기 때문에 전형적인 가스 포집기나 복잡한 장비가 필요 없다. 다른 측정방법과 비교하면 VOC Analyzer는 실험의 반복과 결과의 도출이 용이하기 때문에 건축자재에서 톨루엔, 에틸벤젠, 자이렌, 스티렌을 측정하는데 유용하다. VOC Analyzer는 기본적 공기 중의 4가지 VOC를 측정하는 것인데, 본 연구에서 재료, 파티클보드에서 방산되는 VOC를 분석하는 방법을 고안하였다. 시편을 밀봉하여 96시간 후에 측정할 때 최대 VOC 값, 즉 안정화 된 VOC 방산량을 측정할 수 있다. 건축자재의 TVOC 방산을 측정 시 다른 방법에 비해 쉽고, 빠르며 경제적인 시험 방법이라 VOC Analyzer를 이용한 시험 방법을 개발하였다. VOC Analyzer는 건축 자재로부터 방산되는 VOC에 대해 빠른 측정과 쉬운 시험방법이 요구되는 곳에 널이 사용 될 것이라 기대한다. 더욱이 VOC Analyzer는 현재에 사용되고 있는 표준 방법 보다 더 쉽고, 빠르고, 경제적인 기술로의 적용이 가능하였다.

Plasma Assisted ALD 장비를 이용한 니켈 박막 증착과 Ti 캡핑 레이어에 의한 니켈 실리사이드 형성 효과 (Nickel Film Deposition Using Plasma Assisted ALD Equipment and Effect of Nickel Silicide Formation with Ti Capping Layer)

  • 윤상원;이우영;양충모;하종봉;나경일;조현익;남기홍;서화일;이정희
    • 반도체디스플레이기술학회지
    • /
    • 제6권3호
    • /
    • pp.19-23
    • /
    • 2007
  • The NiSi is very promising candidate for the metallization in 45 nm CMOS process such as FUSI(fully silicided) gate and source/drain contact because it exhibits non-size dependent resistance, low silicon consumption and mid-gap workfunction. Ni film was first deposited by using ALD (atomic layer deposition) technique with Bis-Ni precursor and $H_2$ reactant gas at $220^{\circ}C$ with deposition rate of $1.25\;{\AA}/cycle$. The as-deposited Ni film exhibited a sheet resistance of $5\;{\Omega}/{\square}$. RTP (repaid thermal process) was then performed by varying temperature from $400^{\circ}C$ to $900^{\circ}C$ in $N_2$ ambient for the formation of NiSi. The process temperature window for the formation of low-resistance NiSi was estimated from $600^{\circ}C$ to $800^{\circ}C$ and from $700^{\circ}C$ to $800^{\circ}C$ with and without Ti capping layer. The respective sheet resistance of the films was changed to $2.5\;{\Omega}/{\square}$ and $3\;{\Omega}/{\square}$ after silicidation. This is because Ti capping layer increases reaction between Ni and Si and suppresses the oxidation and impurity incorporation into Ni film during silicidation process. The NiSi films were treated by additional thermal stress in a resistively heated furnace for test of thermal stability, showing that the film heat-treated at $800^{\circ}C$ was more stable than that at $700^{\circ}C$ due to better crystallinity.

  • PDF