• Title/Summary/Keyword: Semiconductor Transformer

Search Result 97, Processing Time 0.035 seconds

A Study on the LCC Type High Frequency DC/DC Converter for Contactless Power Supply System (비접촉 전원장치에 적용한 LCC형 고주파 공진 DC/DC 컨버터에 관한 연구)

  • Kim, Dong-Hee;Hwang, Gye-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.55-64
    • /
    • 2007
  • This paper represents characteristics and design example of series loaded LCC type high frequency resonant DC-DC converter with variable parallel capacitor in the secondary side of inductive power transformer. In this converter, ZVS(zero voltage switching) technique is applied to reduce turn-off switching losses, and the applied converter used the PFM switching pattern to control output voltage. The operating characteristics of the proposed converter is analyzed using nomalized parameter such as switching frequency and load factor with varing the secondary parallel resonant capacitor. The results of analysis show the operating characteristics and design method of the proposed converter using characteristic values. And the proposed converter can be applied for the contactless power supply with linear transfer system such as dean room facilities of semiconductor and Flat Panel Display.

A study of the development of a simple driver for the Pockels cell Q-switch and Its characteristics (단순화된 Pockels cell Q-switch용 구동기 개발 및 특성에 관한 연구)

  • Park, K.R.;Joung, J.H.;Hong, J.H.;Kim, B.G.;Moon, D.S.;Kim, W.Y.;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2116-2118
    • /
    • 2000
  • In the technique of Q-switching, very fast electronically controlled optical shutters can be made by using the electro-optic effect in crystals or liquids. The driver for the Pockels cell must be a high-speed, high-voltage switch which also must deliver a sizeable current. Common switching techniques include the use of vacuum tubes, cold cathode tubes, thyratrons, SCRs, and avalanche transistors. Semiconductor devices such as SCRs, avalanche transistors, and MOSFETs have been successfully employed to drive Pockels cell Q-switch. In this study, a simple driver for the Pockels cell Q-switch was developed by using SCRs, pulse transformer and TTL ICs. The Pockels cell Q-switch which was operated by this driver was employed in pulsed Nd:YAG laser system to investigate the operating characteristics of this Q-switch. And we have investigated the output characteristics of this Q-switch as a function of the Q-switch delay time to Xe flashlamp current on.

  • PDF

High Power Factor Converter for Electric Vehicle Chargers (전기자동차 충전기용 고역율 콘버어터 회로)

  • 김영민;이수원;모창호;유철로
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.33-38
    • /
    • 1997
  • Generally, various semiconductor switching devices for power systems are used in battery chargers for electric vehicle. When these used, it takes the problems of transient-current or distortion of waveforms in power systems near by battery chargers because of harmonics and large peak-current, low power factor, etc., caused by the non-linearity of these devices. Recently, power factor control, line current peak-cut, harmonics reduction which was ignored in past is more and more important. In this paper, to solve those problems we will improve the characteristics of voltage rising and propose the high power factor converter circuit for battery chargers. Our proposed system convert commutated voltage to AC resonant wave in high frequency inverter and rectify the link voltages passed high-frequency transformer and transfer the DC voltages. Especially, the effect using these converter system can be improved very large by power factor control and we have to verify the possibilities of improvement through the experiment of Pb-Acid battery application.

  • PDF

A New High Frequency Linked Soft-Switching PWM DC-DC Converter with High and Low Side DC Rail Active Edge Resonant Snubbers for High Performance Arc Welder

  • Kang, Ju-Sung;Fathy, Khairy;Saha, Bishwajit;Hong, Doo-Sung;Suh, Ki-Young;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.399-402
    • /
    • 2006
  • This paper presents a new circuit topology of dc bus line switch-assisted half-bridge soft switching PWM inverter type dc-dc converter for arc welder. The proposed power converter is composed of typical voltage source half-bridge high frequency PWM inverter with a high frequency transformer link in addition to dc bus line side power semiconductor switching devices fer PWM control scheme and capacitive lossless snubbers. All the active power switches in the half-bridge arm and dc bus lines can achieve ZCS turn-on and ZVS turn-off commutation operation and consequently the total turn-off switching losses can be significantly reduced. As a result, a high switching frequency of using IGBTs can be actually selected more than about 20 kHz. The effectiveness of this new converter topology is proved for low voltage and large current dc-dc power supplies such as arc welder from a practical point of view.

  • PDF

3-Phase Power Quality Disturbance Generator with Phase Jump Function (위상급변 기능을 갖는 3상 전력품질 외란발생기)

  • Lee, B.C.;Choi, S.H.;Paeng, S.H.;Park, S.D.;Choi, N.S.;Kim, I.D.;Chun, T.W.;Kim, H.G.;Nho, E.C.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.463-470
    • /
    • 2006
  • This paper deals with a new 3-phase power quality disturbance generator. The proposed generator can provide phase jump as well as voltage sag, swell, outage, unbalance, and over and under voltage. The operating principle of the generator is described in each mode of disturbance. The magnitude of the phase jump is analysed and it is found that the magnitude is the function of the turn-ratios of the transformers consisting the generator. The scheme has simple structure compared with the conventional one, and the major components of the proposed scheme are SCR thyristor and transformer, which guarantees high reliability and cost-effective implementation of the generator. Furthermore, high efficiency can be obtained because there is no PWM switching of the semiconductor devices, and it is easy to control the system. Simulations are carried out to confirm the operation in each disturbance mode, and experiments has been done with 5kVA power rating. The usefulness of the proposed scheme is verified through simulation and experimental results. It is expected that the scheme can be applied to the performance test of the custom power devices such as UPS, DVR, DSTATCOM, and SSTS with cost-effective system.

High-Efficiency CMOS Power Amplifier using Low-Loss PCB Balun with Second Harmonic Impedance Matching (2차 고조파 정합 네트워크를 포함하는 저손실 PCB 발룬을 이용한 고효율 CMOS 전력증폭기)

  • Kim, Hyungyu;Lim, Wonseob;Kang, Hyunuk;Lee, Wooseok;Oh, Sungjae;Oh, Hansik;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.104-110
    • /
    • 2019
  • In this paper, a complementary metal oxide semiconductor(CMOS) power amplifier(PA) integrated circuit operating in the 900 MHz band for long-term evolution(LTE) communication systems is presented. The output matching network based on a transformer was implemented on a printed circuit board for low loss. Simultaneously, to achieve high efficiency of the PA, the second harmonic impedances are controlled. The CMOS PA was fabricated using a $0.18{\mu}m$ CMOS process and measured using an LTE uplink signal with a bandwidth of 10 MHz and peak to average power ratio of 7.2 dB for verification. The implemented CMOS PA module exhibits a power gain of 24.4 dB, power-added efficiency of 34.2%, and an adjacent channel leakage ratio of -30.1 dBc at an average output power level of 24.3 dBm.

Active Front End Rectifier Control of DC Distribution System Using Neural Network (신경회로망을 적용한 직류배전시스템의 AFE 정류기 제어에 관한 연구)

  • Kim, Seongwan;Jeon, Hyeonmin;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1124-1128
    • /
    • 2021
  • As regulations of emissions from ships become more stringent, electric propulsion systems have been increasingly used to solve this problem in vessels ranging from large merchant ships to small and medium-sized ships. Methods for improving the efficiency of the electric propulsion system include the improvement of power sources; the use of a system linked to environmentally friendly power sources, such as batteries, fuel cells, and solar power; and the development of hardware and control methodology for rectifiers, power conversion devices, and propulsion motors. The method using a phase-shifting transformer with diodes has been widely used for rectification. Power semiconductor devices with grid connection to an environmentally friendly power source using DC distribution, a variable speed power source, and the application of small and medium-sized electric propulsion systems have been developed. Accordingly, the demand for active front-end (AFE) rectifiers is increasing. In this study, a method using a neural network rather than a conventional proportional-integral controller was proposed to control the AFE rectifier. Tested controller data were used to design a neural network controller trained through MATLAB/Simulink. The neural network controller was applied to a rectification system designed using PSIM software. The results indicated the effectiveness of improving the waveform and power factor DC output stage according to the load variation. The proposed system can be applied as a rectification system for small and medium-sized environmentally friendly ships.