• Title/Summary/Keyword: Semiconductor Testing

Search Result 140, Processing Time 0.025 seconds

The Failure Mode and Effects Analysis Implementation for Laser Marking Process Improvement: A Case Study

  • Deng, Wei-Jaw;Chiu, Chung-Ching;Tsai, Chih-Hung
    • International Journal of Quality Innovation
    • /
    • v.8 no.1
    • /
    • pp.137-153
    • /
    • 2007
  • Failure mode and effects analysis (FMEA) is a preventive technique in reliability management field. The successful implementation of FMEA technique can avoid or reduce the probability of system failure and achieve good product quality. The FMEA technique had applied in vest scopes which include aerospace, automatic, electronic, mechanic and service industry. The marking process is one of the back ends testing process that is the final process in semiconductor process. The marking process failure can cause bad final product quality and return although is not a primary process. So, how to improve the quality of marking process is one of important production job for semiconductor testing factory. This research firstly implements FMEA technique in laser marking process improvement on semiconductor testing factory and finds out which subsystem has priority failure risk. Secondly, a CCD position solution for priority failure risk subsystem is provided and evaluated. According analysis result, FMEA and CCD position implementation solution for laser marking process improvement can increase yield rate and reduce production cost. Implementation method of this research can provide semiconductor testing factory for reference in laser marking process improvement.

Array Testing of TFT-LCD Panel with Integrated Gate Driver Circuits

  • Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.68-72
    • /
    • 2020
  • A new method for array testing of TFT-CD panel with the integrated gate driver circuits is presented. As larger size/high resolution TFT-LCD with the peripheral driver circuits has emerged, one of the important problems for manufacturing is array testing on the panel. This paper describes the technology of detecting defective arrays and optimizing the array testing process. For the effective characterization of pixel array, the pixel storage capability is simulated and measured with voltage imaging system. This technology permits full functional testing during the manufacturing process, enabling fabrication of large TFT-LCD panels with the integrated driver circuits.

Measurement of mechanical properties of SU-8 thin film by tensile testing (단축 인장에 의한 SU-8박막의 기계적 물성 측정)

  • 백동천;박태상;이순복;이낙규
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.23-26
    • /
    • 2004
  • Thin film is one of the most general structures used in micro-electro-mechanical systems (MEMS). To measure the mechanical properties of SU-8 film, tensile testing was adopted which offers not only elastic modulus but also yield strength and plastic deformation by load-displacement curve. Tensile testing system was constructed with linear guided servo motor for actuation, load cell for force measurement and dual microscope for strain measurement.

  • PDF

MTA(Memory TestAble) Code for Testing in Semiconductor Memories (반도체 메모리의 테스트를 위한 MTA(Memory TestAble code)코드)

  • 이중호;조상복
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.8
    • /
    • pp.111-121
    • /
    • 1994
  • This paper proposes a memory testable code called MTA(Memory TestAble) code which is based on error correcting code technique for testing functional faults in semiconductor memories. The characteristics of this code are analyzed and compared with those of conventional codes. The developed decoding technique for this code can reduce the decoder circuits up to 70% and obtain two-times faster decoding speed than other codes such as hamming code or Hsiao code. The MTA code is eccectively applicable to parallel testing of semiconductor memories because it has the same information length and parity length. It can detect from single error functional faults to triple error in semiconductor memories.

  • PDF

Development of Monitoring System Using Residual Gas Analyzer (RGA) and Artificial Intelligence Modeling (잔류가스 분석기(RGA)와 인공지능 모델링을 이용한 모니터링 시스템 개발)

  • Ji Soo Lee;Song Hun Kim;Gyeong Su Kim;Hyo Jong Song;Sang-Hoon Park;Deuk-Hoon Goh;Bong-Jae Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.129-134
    • /
    • 2024
  • This study aims to talk about the necessity of solving the PFC gas emission problem raised by the recent development of the semiconductor industry and the remote plasma source method monitoring system used in the semiconductor industry. The 'monitoring system' means that the researchers applied machine learning to the existing monitoring technology and modeled it. In the process of this study, Residual Gas Analyzer monitoring technology and linear regression model were used. Through this model, the researchers identified emissions of at least 12700mg CO2 to 75800mg CO2 with values ranging from ion current 0.6A to 1.7A, and expect that the 'monitoring system' will contribute to the effective calculation of greenhouse gas emissions in the semiconductor industry in the future.

  • PDF

Wafer Map Image Analysis Methods in Semiconductor Manufacturing System (반도체 공정에서의 Wafer Map Image 분석 방법론)

  • Yoo, Youngji;An, Daewoong;Park, Seung Hwan;Baek, Jun-Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • In the semiconductor manufacturing post-FAB process, predicting a package test result accurately in the wafer testing phase is a key element to ensure the competitiveness of companies. The prediction of package test can reduce unnecessary inspection time and expense. However, an analysing method is not sufficient to analyze data collected at wafer testing phase. Therefore, many companies have been using a summary information such as a mean, weighted sum and variance, and the summarized data reduces a prediction accuracy. In the paper, we propose an analysis method for Wafer Map Image collected at wafer testing process and conduct an experiment using real data.

Non-destructive Inspection of Semiconductor Package by Laser Speckle Interferometry (레이저 스페클 간섭법을 이용한 반도체 패키지의 비파괴검사)

  • Kim, Koung-Suk;Yang, Kwang-Young;Kang, Ki-Soo;Choi, Jung-Gu;Lee, Hang-Seo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.81-86
    • /
    • 2005
  • This paper proposes a non-destructive ESPI technique to quantitatively evaluate defects inside a semiconductor package. The inspection system consists of the ESPI system, a thermal loading system and an adiabatic chamber. The technique is high feasibility for non-destructive testing of a semiconductor and overcomes the weaknesses of previous techniques, such as time-consumption and difficult quantitative evaluation. Most defects are classified as delamination defects, resulting from the insufficient adhesive strength between layers and from non-homogeneous heat spread. Ninety percent of the tested samples had delamination defects which originated at the corner of the chip and nay be related to heat spread design.

Non-Destructive Evaluation of Semiconductor Package by Electronic Speckle Pattern Interferometry

  • Kim, Koung-Suk;Kang, Ki-Soo;Jung, Seung-Tack
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.820-825
    • /
    • 2005
  • This paper proposes non-destructive ESPI technique to evaluate inside defects of semiconductor package quantitatively. Inspection system consists of ESPI system, thermal loading system and adiabatic chamber. The technique has high feasibility in non-destructive testing of semiconductor and gives solutions to the drawbacks in previous technique, time-consuming and the difficulty of quantitative evaluation. In result, most of defects are classified in delamination, from which it is inferred to the insufficiency of adhesive strength between layers and nonhomogeneous heat spread. The $90\%$ of tested samples have a delamination defect started at the around of the chip which may be related to heat spread design.

Operating Voltage Prediction in Mobile Semiconductor Manufacturing Process Using Machine Learning (기계학습을 활용한 모바일 반도체 제조 공정에서 동작 전압 예측)

  • Inhwan Baek;Seungwoo Jang;Kwangsu Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.124-128
    • /
    • 2023
  • Semiconductor engineers have long sought to enhance the energy efficiency of mobile semiconductors by reducing their voltage. During the final stages of the semiconductor manufacturing process, the screening and evaluation of voltage is crucial. However, determining the optimal test start voltage presents a significant challenge as it can increase testing time. In the semiconductor manufacturing process, a wealth of test element group information is collected. If this information can be controlled to predict the test voltage, it could lead to a reduction in testing time and increase the probability of identifying the optimal voltage. To achieve this, this paper is exploring machine learning techniques, such as linear regression and ensemble models, that can leverage large amounts of information for voltage prediction. The outcomes of these machine learning methods not only demonstrate high consistency but can also be used for feature engineering to enhance accuracy in future processes.

  • PDF

Fault Detection of Semiconductor Random Access Memories Using Built-In Testing Techniques (Built-In 테스트 방식을 이용한 RAM(Random Access Memory)의 고장 검출)

  • 김윤홍;임인칠
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.5
    • /
    • pp.699-708
    • /
    • 1990
  • This paper proposes two test procedures for detecting functional faults in semiconductor random access memories (RAM's) and a new testimg scheme to execute the proposed test procedures. The first test procedure detects stuck-at faults, coupling faults and decoder faults, and requires 19N operations, which is an improvement over conventional procedures. The second detects restricted patternsensitive faults and requires 69N operations. The proposed scheme uses Built-In Self Testing (BIST) techniques. The scheme can write into more memory cells than I/O pins can in a write cycle in test mode. By using the scheme, the number of write operations is reduced and then much testing time is saved.

  • PDF