• Title/Summary/Keyword: Semiconductor Defect

Search Result 259, Processing Time 0.027 seconds

NOISE CHARACTERISTICS OF SIMPLIFIED FORWARD-TYPE RESONANT CONVERTER

  • Higashi, Toru
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.559-562
    • /
    • 2000
  • The problem of noise generation due to PWM switched-mode power converter has been widely noticed from the viewpoint of Electromagnetic Interference(EMI). Many kings of topologies for resonant converters have been developed both to overcome this noise problem and to attain high power efficiency. It is reported in references that resonant converters which are derived from PWM converter using resonant switch show much lower noise characteristics than PWM converter, and that current-mode resonant converter is more sensitive to stored charge in rectifying diode than voltage-mode counterpart concerning surge generation at diode’s turn-off. On the other hand, above mentioned resonant converters have defect of high-voltage stress on semiconductor switch and complicated circuit configuration. Hence, the simplified Forward-type resonant converter has been proposed and investigated due to its prominent features of simplicity of circuit configuration, low voltage stress and high stability. However, its noise characteristics still remain unknown. The purpose of this paper is to study quantitatively the noise characteristics of this simplified Forward-type resonant converter by experiment and analysis. The influence of parasitic elements and stored charge in rectifying diode on noise generation has been clarified.

  • PDF

Fabrication Processes of Interconnection Systems for Bare Chip Burn-In Tests Using Epitaxial Layer Growth and Etching Techniques of Silicon (실리콘 에피층 성장과 실리콘 에칭기술을 이용한 Bare Chip Burn-In 테스트용 인터컨넥션 시스템의 제조공정)

  • 권오경;김준배
    • Journal of Surface Science and Engineering
    • /
    • v.28 no.3
    • /
    • pp.174-181
    • /
    • 1995
  • Multilayered silicon cantilever beams as interconnection systems for bare chip burn-in socket applications have been designed, fabricated and characterized. Fabrication processes of the beam are employing standard semiconductor processes such as thin film processes and epitaxial layer growth and silicon wet etching techniques. We investigated silicon etch rate in 1-3-10 etchant as functions of doping concentration, surface mechanical stress and crystal defects. The experimental results indicate that silicon etch rate in 1-3-10 etchant is strong functions of doping concentration and crystal defect density rather than surface mechanical stress. We suggested the new fabrication processes of multilayered silicon cantilever beams.

  • PDF

The study of UV emission in ZnO thin films fabricated by Pulsed Laser Deposition (레이저 증착법에 의해 제작된 ZnO 박막의 UV 발광특성연구)

  • 배상혁;이상렬;진범준;우현수;임성일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.95-98
    • /
    • 1999
  • ZnO thin films on (001) sapphire substrates have been deposited by pulsed laser deposition technique using a Nd:YAG laser with the wavelength of 355 nm. In order to investigate the effect of the deposition conditions on the properties of ZnO thin films at an oxygen pressure of 350 mTorr, the experiment has been Performed at various substrate temperatures in the range of 20$0^{\circ}C$ to $700^{\circ}C$. According to XRD, (002) textured ZnO films of high crystalline quality have been obtained and the intensity of UV emission was the highest at 40$0^{\circ}C$ substrate temperature.

  • PDF

Nitrogen Doping Characterization of ZnO Prepared by Atomic Layer Deposition (원자층 증착법으로 성장된 ZnO 박막의 질소 도핑에 대한 연구)

  • Kim, Doyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.642-647
    • /
    • 2014
  • For feasible study of opto-electrical application regarding to oxide semiconductor, we implemented the N doped ZnO growth using a atomic layer deposition technique. The p-type ZnO deposition, necessary for ZnO-based optoelectronics, has considered to be very difficulty due to sufficiently deep acceptor location and self-compensating process on doping. Various sources of N such as $N_2$, $NH_3$, NO, and $NO_2$ and deposition techniques have been used to fabricate p-type ZnO. Hall measurement showed that p-type ZnO was prepared in condition with low deposition temperature and dopant concentration. From the evaluation of photoluminescence spectroscopy, we could observe defect formation formed by N dopant. In this paper, we exhibited the electrical and optical properties of N-doped ZnO thin films grown by atomic layer deposition with $NH_3OH$ doping source.

Materials for Nano Patterning in Semiconductor Fabrication; Organosilicon and High Carbon-containing Materials for Spin Coating Hardmask (반도체 나노 패터닝 구현 재료: Spin 코팅 Hardmask용 유기실리콘 및 고탄소 물질)

  • Cho, Hyeon-Mo;Cheon, Hwan-Sung;Kim, Sang-Kyun;Chang, Tu-Won;Kim, Jong-Seob
    • Polymer Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.472-480
    • /
    • 2009
  • 반도체 미세화가 진행되면서, 이를 성공하기 위해 많은 재료물질이 요구되어진다. 이 중 미세 패턴의 붕괴를 막고 깊은 패턴을 새기기 위해서 필요한 hardmask 재료가 있다. Hardmask는 유기실리콘 재료와 탄소 함량이 높은 재료로 주로 구성되고, 이들은 193 nm 빛과 관련된 광학적 특성을 가지면서 특정 플라즈마에 대한 에치 저항성을 가지는 물성을 가지도록 디자인/합성/배합되어져 있다. 또한, 접합되는 다른 박막과의 compatibility및 용매에 대한 solubility 등이 적절해야만 나노미터 수준의 defect 없는 패턴을 구현할 수 있다.

  • PDF

A Semiconductor Defect Inspection Using Fuzzy Method (퍼지 기법을 이용한 반도체 불량 검사)

  • Lee, Dong-gyun;Kim, Kwang-baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.280-282
    • /
    • 2009
  • 본 논문에서는 굴곡에 의한 조도량의 차이와 명암도 차이를 퍼지 기법에 적용하여 개선된 반도체 불량 검출 방법을 제안한다. 제안된 방법은 먼저 회전각과 양선형 보관법을 이용하여 반도체 영상의 각도를 보정하는 전처리 과정 수행한다. 그리고 굴곡에 대한 조도량의 차이와 패턴 매칭를 이용하여 얻어진 오류 영역의 명암도 차이를 퍼지 소속 함수에 적용하여 결과 값을 추론한다. 최종적으로 비퍼지화된 결과 값을 적용하여 반도체의 초기 불량을 검출한다. 본 논문에서 제안한 방법을 실제 사용되는 반도체 정면 영상과 측면 영상 30쌍을 대상으로 실험한 결과, 기존의 방법에 비해서 반도체의 초기 불량 판단에 효과적인 것을 확인하였다.

  • PDF

A Study on the Deep Learning-Based Defect Prediction Model Using Sensor Data of Semiconductor Equipment (반도체 설비 센서 데이터를 활용한 딥러닝 기반의 불량예측 모델에 관한 연구)

  • Ha, Seung-Jae;Lee, Won-Suk;Gu, Kyo-Yeon;Shin, Yong-Tae
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.459-462
    • /
    • 2021
  • 본 연구는 반도체 제조 공정중 발생하는 센서 데이터를 활용하여 딥러닝기반으로 불량을 예측하는 모델을 제안한다. 반도체 공장에서는 FDC((Fault Detection and Classification)라는 불량을 예측하는 시스템이 있지만, 공정의 복잡도가 높고 센서의 종류가 많아 공정 관리자가 모든 센서의 기준을 설정 및 관리하는데 한계가 있다. 이를 해결하기 위해 공정 설비의 센서 데이터를 딥러닝을 활용하여 학습시켜 센서 기준정보로 임계치를 제공하고, 가공중 발생하는 센서 데이터가 입력되면 정상 여부를 판정하는 모델을 제안한다.

Long-Term Performance of Amorphous Silicon Solar Cells with Stretched Exponential Defect Kinetics and AMPS-1D Simulation (비정질실리콘 태양전지에 대한 장시간 성능예측: 확장지수함수 모형 및 컴퓨터 모의실험)

  • Park, S.H.;Lyou, Jong-H.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.4
    • /
    • pp.219-224
    • /
    • 2012
  • We study for long-term performance of amorphous silicon solar cells under light exposure. The performance is predicted with a kinetic model in which the carrier lifetimes are determined by the defect density. In particular, the kinetic model is described by the stretched-exponential relaxation of defects to reach equilibrium. In this report, we simulate the light-induced degradation of the amorphous silicon solar cells with the kinetic model and AMPS-1D computer program. And data measured for outdoor performances of various solar cells are compared with the simulated results. This study focuses on examining the light-induced degradation for the following amorphous silicon pin solar cells: thickness${\approx}$300 nm, built-in potential${\approx}$1.05 V, defect density (at t=0)${\approx}5{\times}10^{15}cm^{-3}$, short-circuit current density (at t=0)${\approx}15.8mA/cm^2$, fill factor (at t=0)${\approx}0.691$, open-circuit voltage (at t=0)${\approx}0.865V$, conversion efficiency (at t=0)${\approx}9.50%$.

A Study on Plasma Corrosion Resistance and Cleaning Process of Yttrium-based Materials using Atmospheric Plasma Spray Coating (Atmospheric Plasma Spray코팅을 이용한 Yttrium계 소재의 내플라즈마성 및 세정 공정에 관한 연구)

  • Kwon, Hyuksung;Kim, Minjoong;So, Jongho;Shin, Jae-Soo;Chung, Chin-Wook;Maeng, SeonJeong;Yun, Ju-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.74-79
    • /
    • 2022
  • In this study, the plasma corrosion resistance and the change in the number of contamination particles generated using the plasma etching process and cleaning process of coating parts for semiconductor plasma etching equipment were investigated. As the coating method, atmospheric plasma spray (APS) was used, and the powder materials were Y2O3 and Y3Al5O12 (YAG). There was a clear difference in the densities of the coatings due to the difference in solubility due to the melting point of the powdered material. As a plasma environment, a mixed gas of CF4, O2, and Ar was used, and the etching process was performed at 200 W for 60 min. After the plasma etching process, a fluorinated film was formed on the surface, and it was confirmed that the plasma resistance was lowered and contaminant particles were generated. We performed a surface cleaning process using piranha solution(H2SO4(3):H2O2(1)) to remove the defect-causing surface fluorinated film. APS-Y2O3 and APS-YAG coatings commonly increased the number of defects (pores, cracks) on the coating surface by plasma etching and cleaning processes. As a result, it was confirmed that the generation of contamination particles increased and the breakdown voltage decreased. In particular, in the case of APS-YAG under the same cleaning process conditions, some of the fluorinated film remained and surface defects increased, which accelerated the increase in the number of contamination particles after cleaning. These results suggest that contaminating particles and the breakdown voltage that causes defects in semiconductor devices can be controlled through the optimization of the APS coating process and cleaning process.

Effects of Mg on corrosion resistance of Al galvanically coupled to Fe (Fe와 galvanic couple된 알루미늄의 내식성에 미치는 마그네슘의 영향)

  • Hyun, Youngmin;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.40-49
    • /
    • 2013
  • Effects of magnesium and pH on corrosion of aluminum galvanically coupled to iron have studied by using potentio- dynamic and static tests for polarization curves, Mott-Schottky test for analysis of semiconductor property, and GD-AES and XPS for film analysis. Pitting potential was sensitive to magnesium as an alloying element but not to pH, while passive current was sensitive to pH but not to magnesium. It was explained with, instead of point defect model (PDM), surface charge model describing that the ingression of chloride depends on the state of surface charge and passive film at film/solution interface is affected by pH. In addition, galvanic current of aluminum electrically coupled to iron was not affected by magnesium in pH 8.4, 0.2M citrate solution but was increased by magnesium at the solution of pH 9.1. The galvanic current at pH 9.1 increased with time at the initial stage and after the exposure of about 200 minute, decreased and stabilized. The behavior of the galvanic current was related with the concentration of magnesium at the surface. It agreed with the depletion of magnesium at the oxide surface by using glow discharge atomic emission spectroscopy (GD-AES). In addition, pitting potential of pure aluminum was reduced in neutral pH solution where chloride ion maybe are competitively adsorbed on pure aluminum. It was confirmed by the exponential decrease of pitting potential with log of [$Cl^-$] around 0.025 M of [$Cl^-$] and linear decrease of the pitting potential. From the above results, unlike magnesium, alloying elements with higher electron negativity, lowering isoelectric point (ISE), are recommended to be added to improve pitting corrosion resistance of aluminum and its alloys in neutral solutions as well as their galvanic corrosion resistance in weakly basic solutions.