• Title/Summary/Keyword: Semiconductor Cleaning

Search Result 157, Processing Time 0.028 seconds

Acoustic Analysis of High-Frequency Ultrasonic Cleaner

  • Choi, Sunghoon;Kim, Jin Oh;Kim, Yong-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1E
    • /
    • pp.49-56
    • /
    • 1997
  • Ultrasonic cleaning at high frequency around 1 MHz, called megasonic cleaning, is commonly used to remove particles less than 1 ㎛ by generating high frequency accelerations on the cleaning objects. Cleaning is performed in an ultrasonically-excited liquid contained in a double-structured container. Ultrasonic waves generated by piezoelectric transducers propagate in the outer container and are transmitted through the inner container. The bottom of the inner container is inclined to make oblique incidence of the ultrasonic wave in order to raise the efficiency of the transmission through the bottom plate. This work deals with the efficiency of the transmission, which directly affects the cleaning performance. The transmission characteristics of the ultrasonic wave in the megasonic cleaner have been obtained analytically and numerically for the variations of some parameters, such as the thickness and inclined angle of the bottom plate of the inner container and the chemical ratio and temperature of the cleaning liquid. The calculated results have yielded the optimum cleaning condition in terms of the sound power transmitted into the cleaning liquid.

  • PDF

Electrolyzed water as an alternative for environmentally-benign semiconductor cleaning chemicals

  • Ryoo, Kunkul;Kang, Byeongdoo
    • Clean Technology
    • /
    • v.7 no.3
    • /
    • pp.215-223
    • /
    • 2001
  • A present semiconductor cleaning technology is based upon RCA cleaning technology which consumes vast amounts of chemicals and ultra pure water(UPW) and is the high temperature process. Therefore, this technology gives rise to the many environmental issues, and some alternatives such as electrolyzed water(EW) are being studied. In this work, intentionally contaminated Si wafers were cleaned using the electrolyzed water. The electrolyzed water was generated by an electrolysis system which consists of three anode, cathode, and middle chambers. Oxidative water and reductive water were obtained in anode and cathode chambers, respectively. In case of NH4Cl electrolyte, the oxidation-reduction potential and pH for anode water(AW) and cathode water(CW) were measured to be +1050mV and 4.8, and -750mV and 10.0, respectively. AW and CW were deteriorated after electrolyzed, but maintained their characteristics for more than 40 minutes sufficiently enough for cleaning. Their deterioration was correlated with CO2 concentration changes dissolved from air. Contact angles of UPW, AW, and CW on DHF treated Si wafer surfaces were measured to be $65.9^{\circ}$, $66.5^{\circ}$ and $56.8^{\circ}$, respectively, which characterizes clearly the eletrolyzed water. To analyze the amount of metallic impurities on Si wafer surface, ICP-MS was introduced. It was known that AW was effective for Cu removal, while CW was more effective for Fe removal. To analyze the number of particles on Si wafer surfaces, Tencor 6220 were introduced. The particle distributions after various particle removal processes maintained the same pattern. In this work, RCA consumed about $9{\ell}$ chemicals, while EW did only $400m{\ell}$ HCl electrolyte or $600m{\ell}$ NH4Cl electrolyte. It was hence concluded that EW cleaning technology would be very effective for promoting environment, safety, and health(ESH) issues in the next generation semiconductor manufacturing.

  • PDF

Effect of Brush Treatment and Brush Contact Sequence on Cross Contaminated Defects during CMP in-situ Cleaning

  • Kim, Hong Jin
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.239-244
    • /
    • 2015
  • Chemical mechanical polishing (CMP) is one of the most important processes for enabling sub-14 nm semiconductor manufacturing. Moreover, post-CMP defect control is a key process parameter for the purpose of yield enhancement and device reliability. Due to the complexity of device with sub-14 nm node structure, CMP-induced defects need to be fixed in the CMP in-situ cleaning module instead of during post ex-situ wet cleaning. Therefore, post-CMP in-situ cleaning optimization and cleaning efficiency improvement play a pivotal role in post-CMP defect control. CMP in-situ cleaning module normally consists of megasonic and brush scrubber processes. And there has been an increasing effort for the optimization of cleaning chemistry and brush scrubber cleaning in the CMP cleaning module. Although there have been many studies conducted on improving particle removal efficiency by brush cleaning, these studies do not consider the effects of brush contamination. Depending on the process condition and brush condition, brush cross contamination effects significantly influence post-CMP cleaning defects. This study investigates brush cross contamination effects in the CMP in-situ cleaning module by conducting experiments using 300mm tetraethyl orthosilicate (TEOS) blanket wafers. This study also explores brush pre-treatment in the CMP tool and proposes recipe effects, and critical process parameters for optimized CMP in-situ cleaning process through experimental results.

Development of Multi-Chemical Supply System for Semiconductor Wafer Cleaning Station

  • Chung, Myung-Jin;Song, Young-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1309-1312
    • /
    • 2005
  • A multi-chemical supply system is developed and applied to a wet station, which uses the multi-chemical process in one bath. To control the concentration of two chemicals, control logic of a supply pump is programmed using the programable logic controller (PLC). By using the multi-chemical supply system, wet station with single bath is applied to cleaning process using multi chemicals such as buffed oxide etchant (BOE) and standard clean 1 (SC-1). The concentration of each chemical is measured in the bath to verify the multi-chemical supply system. The control range in the each chemical concentration is measured to 1.33weight% in NH4OH and 0.23weight% in H2O2. The multi-chemical supply system can be movable and usable as an independent module of fixed wet station. By simply midifying the PLC, a multi-chemical supply system can be developed for a wet station.

  • PDF

Development of Unmanned Cleaning Robot for Photovoltaic Panels (태양광발전시설 무인 유지보수 로봇 개발)

  • Lee, Hyungyu;Lee, Sang Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.144-149
    • /
    • 2019
  • This paper describes the results of a study on the unmanned maintenance robot that simultaneously performs the cleaning and inspection of the photovoltaic panels. The robot has a special adsorptive device, an infrared sensor, a vacuum level sensor and a camera. The robot uses two SSC (Sliding Suction Cup) adsorptive devices to move up and down the slope. First, the forces generated when the robot moves up the slope are mechanically analyzed, and the required design and control of the adsorption system are suggested. The robot was designed and manufactured to operate stably by using the presented results. Next, the normal force between the panel and the wheel was measured to confirm that the robot was manufactured and operated as intended, and the robot motion was tested on the inclined panel. It has been proven that robots are well designed and built to clean and inspect sloped panels.

A Study on the corrosion property by post treatment in the metal dry etch (Metal 건식각 후처리에 따른 부식 특성에 관한 연구)

  • Mun, Seong-Yeol;Kang, Seong-Jun;Joung, Yang-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.747-750
    • /
    • 2007
  • This study proposes that chlorine residue after metal etch as the source of metal corrosion, and charges should be removed by optimizing etch, PR strip and cleaning condition. Charges distributed along the metal line acts as a source of tungsten (W) plug corrosion when associated with following cleaning solution. In cleaning process after metal etch and PR strip, chemical selection is significantly important in terms of metal corrosion. Optimal corrosion preventive PH, no metal attack (choice of optimal inhibitants), high by product removal efficiency and optimal de ionized water treatment condition is critical to the metal corrosion prevention.

  • PDF

A Study on Design of Intelligent Wet Station for Semiconductor (지능형 반도체 세정장비 설계에 관한 연구)

  • Kim Jong Won;Hong Kwagn Jin;Cho Hyun Chan;Kim Kwang Sun;Kim Doo Yong;Cho Jung Keun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.3 s.12
    • /
    • pp.29-33
    • /
    • 2005
  • As the integrated devices become more and more sophistcated, the diameter of wafers increased up to 300 mm and strict level of cleaning is necessary to remove the particulates on the surface of wafer. Therefore we need a new type of wet-station which can reduce DI water and chemical in the cleaning process. Moreover, it is important to control the temperature and the concentration of chemical in the wet-station. In the conventional chemical supply system, it is difficult not only to fit the mixing rate of chemicals in cleaning process, but also to fit the quantity and temperature. Thus, we propose a new chemicals supply system, which overcomes above problems by the analysis of fluid and thermal transfer on chemical supply system.

  • PDF

Design and Analysis of the Basic Components for the Semiconductor Wafer Cleaning Equipment Monitoring System (반도체 웨이퍼 세정 장비 모니터링 시스템을 위한 기본 요소의 분석 및 설계)

  • Kang, Ho-Seok;Rim, Seong-Rak
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.115-125
    • /
    • 2000
  • In this paper, we suggest the basic components of monitoring system for the semiconductor wafer cleaning equipment and a monitoring system model based on these components. Basic component is defined as a mandatory function which consists of communication with the control system, user interface, communication with the remote monitoring system, management of monitoring data and inter-task communication. We have defined the function of each component and the relation among them, and designed each component as a task. To evaluate the validity of the suggested model, we have implemented the basic components using the Visual C++ on Windows NT and applied them to the Monitoring System for the semiconductor wafer cleaning equipment.

  • PDF