• Title/Summary/Keyword: Semicon electrode

Search Result 4, Processing Time 0.019 seconds

Effects of Surfactant in Semicon Electrode on Electrical Conduction of XLPE (반도전 전극에 들어 있는 계면활성제가 XLPE의 전기전도 특성에 미치는 영향)

  • 조준상;서광석;이건주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.227-234
    • /
    • 2000
  • Electrical conduction characteristics of crosslinked polyethylene(XLPE) were investigated using an electrode made of semicon material containing a surfactant. When the semicon material is used as an electrode the conduction of XLPE obeys a space charge limited conduction(SCLC) mechanism which holds true for both control and surfactant-containing semicon electrodes. Conduction currents get higher with the addition of surfactant in the semicon electrodes while the charge mobility increases with the increase of surfactant content in the semicon electrode. The diffusion of surfactant molecules into the XLPE was confirmed via a $\mu$-FTIR analysis. It was found through a measurement of spatial charge distributions that the surfactant in the semicon electrodes enhances the injection of negative charge into the XLPE from the electrode. Experimental results and their origins are discussed in detail.

  • PDF

The Improvement of Sensing Performance of ISFET Glucose and Sucrose Sensors by Using Platinum Electrode and Photo-crosslinkable Polymers (백금전극과 감광성 고분자를 이용한 ISFET 포도당 및 자당센서의 감지성능 개선)

  • Cho, Byung-Woog;Jang, Won-Duk;Kim, Chang-Soo;Park, Lee-Soon;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.23-28
    • /
    • 1995
  • The ISFET glucose and sucrose sensors containing platinum electrode and photopolymeric enzyme membrane were fabricated. The platinum working electrode was used for the electrolysis of hydrogen peroxide, which was the other product of the enzyme reaction, to improve sensing characteristics of the sensors. In order to improve response time, photo-crosslinkable polymer(PVA-SbQ) was used to the matrix for the enzyme immobilized membrane. The characteristics of glucose and sucrose sensors were investigated according to the variation of platinum electrode area. The response time was about $3{\sim}5$ minutes and determinations of glucose and sucrose in the range of about $30{\sim}300mg/dl$ could be possible.

  • PDF

Reverse-Conducting IGBT Using MEMS Technology on the Wafer Back Side

  • Won, Jongil;Koo, Jin Gun;Rhee, Taepok;Oh, Hyung-Seog;Lee, Jin Ho
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.603-609
    • /
    • 2013
  • In this paper, we present a 600-V reverse conducting insulated gate bipolar transistor (RC-IGBT) for soft and hard switching applications, such as general purpose inverters. The newly developed RC-IGBT uses the deep reactive-ion etching trench technology without the thin wafer process technology. Therefore, a freewheeling diode (FWD) is monolithically integrated in an IGBT chip. The proposed RC-IGBT operates as an IGBT in forward conducting mode and as an FWD in reverse conducting mode. Also, to avoid the destructive failure of the gate oxide under the surge current and abnormal conditions, a protective Zener diode is successfully integrated in the gate electrode without compromising the operation performance of the IGBT.