• Title/Summary/Keyword: Semi-transverse ventilation system

Search Result 12, Processing Time 0.023 seconds

A study on the ventilation characteristics and design of transverse ventilation system for road tunnel (도로터널 횡류환기방식의 환기특성 및 시스템 설계 관한 연구)

  • Ryu, Ji-Oh;Kim, Hyo-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.305-315
    • /
    • 2018
  • In this study, the ventilation characteristics and the relationships between the required ventilation flow rate and the ventilation system flow rate was investigated by numerical method for the optimum design of the transverse ventilation and semi-transverse ventilation system in road tunnels. The following results were obtained. In supply exhaust transverse ventilation system, the system supply-exhaust air flow rate is theoretically equal to the difference between the required ventilation flow rate and natural ventilation flow rate. However, it is shown that it increases by about 10% in the analysis results. And, in the case of the longitudinal air flow rate is increased by installed jet fans, ventilation system air flow rate is reduced. However, as the longitudinal air flow rate increases, the concentration of pollutants in the tunnel decreases, so the exhaust effect of pollutants decreases, and the effect of reducing the system air flow rate is decreased. In case of semi-transverse with only air supply, ventilation system air flow rate is equal to required ventilation air flow rate when tunnel inlet velocity is negative, but results is shown it is increased within about 13.3%. Also, it was found that ventilation effect can not be expected even if the jet fans are increased when the tunnel inlet velocity is negative.

A study on the program development for optimizing the supply and exhaust port opening ratio in road tunnels with transverse ventilation system (횡류식 도로터널의 급배기구 개도율 최적화 프로그램 개발 연구)

  • Jo, Hyeong-Je;Chun, Kyu-Myung;Min, Dea-Kee;Kim, Jong-Won;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.517-532
    • /
    • 2017
  • The transverse ventilation system, commonly applied to urban tunnel, is necessary to be distributed with airflow uniformly. In this study, we developed a program that can optimize the opening ratio of ports to ensure ventilation performance of design criteria through a uniform airflow distribution even though ventilation interval becomes longer. And program's prediction performance was verified by comparison with TUNVEN DUCT program. For comparison, Semi-transverse ventilation system was applied. Both programs predicted a similar port size and air flow distribution, and the variation range of the calculated values was 11.71% and 1.36%, respectively. This program is very useful for port optimization design of transverse and semi-transverse ventilation system, because it is possible to analyze various tunnel lengths and supply/exhaust port installation conditions.

A Study on the Effective Smoke Exhaust Amount of Load-Tunnel with Semi-Transverse Ventilation - Balanced Exhaust Case - (도로터널 반횡류식 환기방식의 최적배연 풍량산정에 관한 연구 - 균일배기의 경우 -)

  • Rie, Dong-Ho;Yoo, Ji-Oh;Shin, Hyun-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.46-51
    • /
    • 2006
  • The smoke exhaust system is one of the effective systems to save lives when fire occurs underground. This study presents a complete analysis of effective smoke exhaust and smoke characteristics for a fire occurring with a transverse ventilation system use as a smoke exhaust system. The performance of the smoke management system was studied by computer modeling using FDS version 3.1. A fire size of 20MW was used for tunnel with balanced exhaust transverse ventilation. The smoke management design and the procedure as simulated in this study are also compliant to the tunnel construction and fire codes of Korea.

A Numerical Study on Characteristics of Smoke Exhaust in Road Tunnel Fires for Different Ventilation System (터널 화재 시 환기 방식에 따른 배연 특성의 수치해석 연구)

  • Kim, Jong-Yoon;Yoo, Ji-Oh
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.201-207
    • /
    • 2008
  • In this study, three Dimensional CFD simulations were carried out to investigate the effective smoke extraction system in bi-directional road tunnel fires using FLUENT. Characteristics of transverse system with big size extraction port or with uniform extraction port, semi-transverse system and longitudinal system for smoke extraction system were analyzed. Air velocity, port size, and operating method were used with variable. Distributions of smoke spread, CO was analyzed. As a result, the transverse ventilation system with big size port was found to be more effective than the uniform ports for bi-directional road tunnel.

Numerical Study on the Supply and Exhaust Port Size and Fire Management Method in the Semi-transverse Ventilation System for Road Tunnel (도로터널 반횡류환기시스템에서 급배기 포트개도 및 화재시 운영방안에 관한 수치해석적 연구)

  • Ryu, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.68-74
    • /
    • 2016
  • In semi-transverse ventilation system applied for road tunnel, adjustment of the port opening ratio is an essential part for uniform airflow rate per unit length over the entire tunnel. However, it has not been considered decently throughout the design process and operating of the tunnel. Therefore, in this study, we developed a program for the calculation of the opening size ratio of supply or exhaust port in transverse ventilation system and carried out the research to present a management plan for the port. In supply duct system, the opening size of the port had a tendency to increase and then decrease later when it gradually becomes closer toward the bulkhead at the beginning of the duct the minimum opening degree is to appeared as 56%. In the exhaust system, port size is the smallest at the beginning of duct as 15%, has shown a tendency to increase towards the bulk head. As results of estimating the air flow rate for 300 m intervals, the exhaust flow rate in the center of tunnel appeared to be extremely low as 8.1% and 12.5% when port size is constant and is adjusted supply type. Thus, even if the normal ventilation efficiency is declines, yet it is highly recommend adjusting the port size in order to obtain a uniform flow rate at fire accidents.

A Study on the Effective Fire and Smoke Control in Road-Tunnel with Semi-Transverse Ventilation (Oversized Exhaust System) (도로터널 화재시 반횡류식 환기방식에서의 최적배연 연구(대배기구 방식))

  • Kim, Jong-Yoon;Jeon, Yong-Han
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.79-84
    • /
    • 2009
  • The smoke control system plays the most important role in securing evacuation environment when a fire occurs in road tunnels. Smoke control methods in road tunnels are classified into two categories which are longitudinal ventilation system and transverse ventilation system. In this study it is intended to review the characteristics of smoke behavior by performing numerical analysis for calculating the optimal smoke exhaust air volume when a fire occurs in tunnels in which transverse ventilation is applied, and for obtaining the basic data required for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions for various conditions. As a result of this study, when the critical velocity in the tunnel is 1.75m/s and 2.5m/s, the optimal smoke exhaust air volume has to be more than $173m^3/s$, $236m^3/s$ for the distance of the smoke moving which can limit the distance to 250m. In addition, in case of uniform exhaust the generated smoke is effectively taken away if the two exhaust holes near the fire region are opened at the same time.

A study on the program development for area optimizing of damper ports in road tunnels with transverse ventilation system (횡류식 도로터널의 급, 배기구 포트 개구면적 최적화 프로그램 개발 연구)

  • Jo, Hyeong-Je;Chun, Kyu-Myung;Min, Dea-Kee;Kim, Jong-Won;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.177-188
    • /
    • 2019
  • The purpose of the optimization of the installation of supply/exhaust ports for tunnels with transverse ventilation system is to supply fresh air from outside to inside of tunnels uniformly and exhaust pollutant from tunnels properly for creating safe and clean environment for tunnel users. For this purpose, a ventilation port area optimization program was developed to obtain a uniform supply or exhaust air volume inside a great depth double deck tunnel with transverse ventilation system. In order to area optimize the developed port sizing program, the wind velocity was measured in the duct of the currently operated tunnel with semi-transverse ventilation. Also 3D cfd was performed on the same tunnel and cfd results were compared to the measured value. As a result, the error rate between the predicted value from the program and measured value was 6.72%, while the error rate between the predicted value from the program and 3D cfd analysis value was 4.86%. Both of comparison results show less than 10% of error rate. Thus It is expected that supply/exhaust port optimization design of transverse ventilation tunnel can be possible with using this large exhaust port area optimization program.

The study of ventilation system during fire in road tunnel with bi-directional or congested unidirectional traffic (교통정체가 심한 도로터널에 대한 화재시 제연방식에 관한 연구)

  • Yoo, Ji-Oh;Shin, Hyun-Jun;Nam, Chang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.474-479
    • /
    • 2008
  • The purpose of this paper is to estimate the fire safety in tunnels with bi-directional and/or congested unidirectional traffic where there may be people on both sides of the fire. Therefore, the spread and movement of smoke are simulated by Fire Dynamic Simulator code under different ventilation systems, longitudinal, semi-transverse, large port exhaust system. And as quantitative risk index, FED (Fractional Effective Dose) for each ventilation system are calculated and compared by existed code developed previous research.

  • PDF

A study on the ventilation control method of road tunnel for small vehicles (소형차 전용 도로터널의 환기기 제어방안에 대한 연구)

  • Ryu, Ji-Oh;Lee, Hu-Young;Chang, Ji-Don
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.749-762
    • /
    • 2019
  • In recent years, in urban areas, underground of roads are being promoted in order to resolve traffic congestion and to secure green spaces, and due to the low ratio of large vehicles, they are planned or constructed as road tunnels for small cars only. In addition, the tunnels being built in the city is a tendency to be enlarged to play the role of main roads. Accordingly, the capacity of the ventilation system is increasing and various ventilation methods are required, and the importance of maintenance after the completion of the tunnel such as the operating cost of the ventilation system is emphasized. Therefore, the need for optimization of the operation stage for reducing the power consumption of the ventilation system and the study of the ventilation system operation control logic is increasing. In this study, the study on the necessity of the optimization of operation stage and control logic of the ventilation system was carried out to realize the energy-saving operation for the small car only passing through tunnels which is applied of ① jet fan and combination ventilation system (② jet fan + air purifying equipment, ③ jet fan + vertical shaft, ④ jet fan + supply air semi-transverse). As a result of this study, there can be various operating combinations in the case of the combined ventilation system, and even though the amount of ventilation air is the same, the operating power varies greatly according to the operating combinations. It was found that operating the axial fan first rather than the jet fan first operation method has an effect on power saving.

A study on the operation characteristics of oversized exhaust port applicable to double-deck tunnel (복층터널에 적용 가능한 화재 연동형 대배기구 운영 특성 분석 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Yangkyun;Park, Byoungjik;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.887-895
    • /
    • 2019
  • Recently, the number of underground road development projects has been increasing to solve traffic problems in the national capital region and metropolitan areas with intensified overcrowding, and there has been a tendency to plan underground roads by applying a double-deck tunnel technology that has advantages in constructability and economical efficiency. The double-deck tunnel has a structure where one excavation section is divided into two parts and used as up and down lines, and is mainly used as a road for small vehicles only due to its low floor height. In addition, due to the small cross-sectional area, it has characteristics different from those of general road tunnels in terms of ventilation and disaster prevention. In this regard, this study proposed an operational plan that applies an oversized exhaust system, which is one of semi-transverse ventilation systems, to small cross-sectional tunnels like double-deck tunnel with low floor height, and a comparative analysis between smoke exhaust characteristics according to the fire occurrence locations and oversized exhaust systems was conducted using the Fire Dynamics Simulator (FDS). The results showed that unlike uniform exhaust, intensive smoke exhaust using the oversized exhaust port maximized the delay effect of smoke diffusion and limited the smoke within 50 m above and below the fire point.