• Title/Summary/Keyword: Semi-Infinite Plate

Search Result 40, Processing Time 0.027 seconds

SOLUTION OF THE BOUNDARY LAYER EQUATION FOR A MAGNETOHYDRODYNAMIC FLOW OF A PERFECTLY CONDUCTING FLUID

  • ZAKARIA, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.6 no.2
    • /
    • pp.63-73
    • /
    • 2002
  • The influence of unsteady boundary layer magnetohydrodynamic flow with thermal relaxation of perfectly conducting fluid, past a semi-infinite plate, is considered. The governing non linear partial differential equations are solved using the method of successive approximations. This method is used to obtain the solution for the unsteady boundary layer magnetohydrodynamic flow in the special form when the free stream velocity exponentially depends on time. The effects of Alfven velocity $\alpha$ on the velocity is discussed, and illustrated graphically for the problem.

  • PDF

Wave Screening Effectiveness of Infilled Trenches (방진벽의 표면가 산란효과)

  • 이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.152-159
    • /
    • 1997
  • An analytical method is developed to study the propagation of surface waves across infilled trenches. The Green's function technique is used to estimate the reflection and transmission coefficients of Rayleigh waves across a semi-infinite plate inserted between two homogeneous quarter-spaces. After validating the method against experimental data, influence of the material contrast and the angle of incidence on the screening effectiveness of an infilled trench is examined.

  • PDF

GTD Analysis of Electromagnetic Plane Wave Scattering by Open-Ended Parallel Plate Waveguide with a Slanted Terminator Inside (GTD를 이용한 경사진 벽으로 막힌 평행도파관의 전자파 산란 해석)

  • 선영식;명노훈
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.11
    • /
    • pp.19-24
    • /
    • 1992
  • In this paper, a high frequency method is developed which combines the uniform Geometrical Theory of Diffraction(GTD) and the Aperture Integration(AI) to analyze electromagnetic plane wave scattering by a perfectly-conducting, open-ended, semi-infinite parallel plate waveguide with a uniform layer of absorbing material on its inner wall, and with a slanted planar termination inside. In this method, first, the field of an arbitary point inside the paraller plate waveguide is computed by the GTD. Second, the field scattered into exterior region by the waveguide is found using the equivalent current, which can be obtaind from the aperture field of the waveguide and using the AI. Numerical results based on this GTD method are presented and compared with those based on the mode matching method.

  • PDF

Modal Analysis on SPL of the Periodic Structure depend on Unsymmetrical Beam Space (비대칭형 보강재 간격에 따른 주기구조물의 SPL모드 해석)

  • 김택현;김종태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.52-60
    • /
    • 2002
  • The purpose of this research is to study the vibration and acoustic pressure radiation from a thin isotropic flat plate stiffened by a rectangular array of beams, and excited by a time harmonic point force. These constructions on aircraft and ship structures are often subjected to fiequency dependent pressure fluctuations and forces. Forces from the these excitations induce structural vibrations in a wide range of fiequencies, which may cause such things as acoustic fatigue and internal cabin noise in the aircraft. It is thus important that the response characteristics and vibration modes of such periodic structures be horn. From this theoretical model, the sound pressure levels(SPL) in a semi-infinite fluid(water) bounded by the plate with the variation in the locations of an external time harmonic point farce on the plate can be calculated efficiently using three numerical tools such as the Gauss-jordan method the LU decomposition method md the IMSL numerical package.

An analytical study on unsteady thermal stresses of functionally graded materials (경사기능재료의 비정상 열응력에 관한 해석적 연구)

  • Choi, Deok-Kee;Kim, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1441-1451
    • /
    • 1997
  • This paper addresses method which can be used for analyzing thermal stresses of a functionally graded material(FGM) using semi-analytical approach. FGM is a nonhomogeneous material whose composition changes continuously from a metal surface to a ceramic surface. An infinite one dimensional FGM plate is considered. The temperature distribution in the FGM is obtained by approximate Green's function solution. To expedite the convergence of the solutions, alternative Green's function solution is derived and shows good agreement with results from finite difference method. Thermal stresses are calculated using temperature distribution of the plate.

A study on relaxation of thermal stresses of heat-resistant systems (열차단 시스템에 있어서의 열응력 완화에 대한 연구)

  • Choi, Deok-Kee;Kim, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.16-22
    • /
    • 1998
  • This paper addresses a method which can be used for analyzing thermal stresses of a functionally graded material(FGM) using semi-analytical approach. FGM is a nonhomogeneous material whose composition is changed continuously from a metal surface to a ceramic surface. An infinite one dimensional FGM plate is considered. The temperature distribution in the FGM is obtained by approximate Green's function solution. To expedite the convergence of the solutions, alternative Green's function solution is derived and shows good agreement with results from finite difference method. Thermal stresses are calculated using temperature distribution of the plate.

Fatigue Crack Initiation and Propagation at Notches (노치 에서의 피로 균열 발생 과 전파 에 관한 연구)

  • 이강용;이택성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.141-144
    • /
    • 1984
  • The fatigue limits of crack initiation and propagation on the edge elliptical notched semi-infinite plate under completely reversed fatigue stress are determined theoretically. Assuming that the crack initiation and propagation occur when stress intensity factors of notched plate reach the critical values obtained from critical micro-crack length under plain fatigue limit loading and the threshold stress intensity factory, respectively, the fatigue limits of crack initiation and propagation are obtained. The induced theoretical fatigue limit of crack initiation is expressed in terms of plain fatigue limit, critical micro-crack length and notch shape. The one of crack propagation is in terms of threshold stress intensity factor, plain fatigue limit and notch shape. These theoretical results are showed to be in good agreement of Frost's experimental data.

Effect of variable viscosity on combined forced and free convection boundary-layer flow over a horizontal plate with blowing or suction

  • Mahmoud, Mostafa A.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2007
  • The effects of variable viscosity, blowing or suction on mixed convection flow of a viscous incompressible fluid past a semi-infinite horizontal flat plate aligned parallel to a uniform free stream in the presence of the wall temperature distribution inversely proportional to the square root of the distance from the leading edge have been investigated. The equations governing the flow are transformed into a system of coupled non-linear ordinary differential equations by using similarity variables. The similarity equations have been solved numerically. The effect of the viscosity temperature parameter, the buoyancy parameter and the blowing or suction parameter on the velocity and temperature profiles as well as on the skin-friction coefficient and the Nusselt number are discussed.

  • PDF

The Vibration of an Elastic Rectangular Plate in a Fluid (직사각형판(直四角形板)의 접수진동(接水振動))

  • Keuck-Chun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.4
    • /
    • pp.1-10
    • /
    • 1976
  • It is a well-known phenomenon that, in the case of vibrations of an elastic body in a fluid such as water, the presence of the surrounding fluid has the effect of lowering the natural frequencies of the vibration as compared with those in air or vacuum on account of the increased inertia, i.e. added mass. In this report, defining the mass increase factor as the ratio of added mass to vibration mass of the body in air, the author investigated the mass increased factor of an elastic plate vibrating in the fluid. It is assumed that the edges of the plate are simply supported, and that the surrounding fluid is an infinite ideal one. For the problem formulation the elliptical cylindrical coordinate system is adopted, so that a rectangular plate may be represented by a sheet degenerated from an elliptical cylinder. By virtue of the coordinate system adopted, plates which are chordwisely finite and lengthwisely contineous could directly be treated, but plates which are chordwisely finite in both directions could not be treated directly. For the latter, hence, plates which are chordwisely finite and lengthwisely semi-finite are investigated as an appropriate approximation. Some examples of the mass increase factor are numerically calculated for the fundamental mode and modes of zero or one nodal line in each direction with the range of the aspect ratio from 1 to 10 or more.

  • PDF

Evaluation of the Nip Pressure Profile and Analysis of Heat Transfer in Soft Nip Calender (소프트닙 캘린더의 닙 압력 프로파일 평가와 닙 내 열전달 현상에 대한 해석)

  • 이사용;이학래;박선규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.2
    • /
    • pp.26-34
    • /
    • 2000
  • Understanding the nip geometry and heat transfer phenomena of soft nip calenders, which has been used in the production of newsprint and coated papers for many years, is very important since improper setting of soft nip calendering conditions causes deterioration of paper quality and productivity. In this study theoretical analysis on nip pressure and heat transfer phenomena in the nip of soft nip calenders has been made. The variables examined were calendering pressure, surface temperature of the heating roll, nip residence time and ingoing sheet moisture, By measuring nip widths and maximum nip pressure with Prescale film at a normal temperature, accurate line load has been obtained. With this line load, nip pressures at different temperature and nip widths were calculated. Results showed that as temperature increased, nip widths increased and nip pressures decreased. Equations derived for the heat conduction phenomena in soft nip calender nip were derived based on the semi-infinite plate and finite difference method and were used for the analysis of heat transfer within the nip. Temperature profiles in z-direction of paper within the nip were obtained. Finite difference method allowed more accurate analysis of the heat transfer in the calender nip. In this study newsprint and coated paper were considered as a single plate and two-layer plate consisted of sheet and coating layers, respectively. Heat trans-fer to paper increased as heated roll surface temperature and nip residence time were increased.

  • PDF