• Title/Summary/Keyword: Semi-Infinite

Search Result 307, Processing Time 0.022 seconds

A Uniform GTD and Aperture Integration Analysis of the Electromagnetic Scattering by a Semi-infinite Parallel Plate Waveguide with an Interior Termination and Lossy Inner Walls (Uniform GTD와 Aperture Integration을 이용한 내부에 Terminator가 있는 평면도파관의 전자기파의 산란)

  • Myung, N.H.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.105-109
    • /
    • 1987
  • A solution which combines ray and aperture integration(AI) techniques is presented for the problem of electromagnetic plane wave scattering by an open-ended, perfectly-conducting, semi-infinite parallel plate waveguide with a thin, uniform layer of lossy or absorbing material on its inner walls, and with a simple planar termination inside. Numerical results are given for the fields outside the waveguide.

  • PDF

REPRESENTATION OF OPERATOR SEMI-STABLE DISTRIBUTIONS

  • Choi, Gyeong-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.135-152
    • /
    • 2000
  • For a linear operator Q from $R^{d}\; into\; R^{d},\; {\alpha}\;>0\; and\ 0-semi-stability and the operater semi-stability of probability measures on $R^{d}$ are defined. Characterization of $(Q,b,{\alpha})$-semi-stable Gaussian distribution is obtained and the relationship between the class of $(Q,b,{\alpha})$-semi-stable non-Gaussian distributions and that of operator semistable distributions is discussed.

  • PDF

Stochastic Finite Element Analysis of Semi-infinite Domain by Weighted Integral Method (가중적분법에 의한 반무한영역의 추계론적 유한요소해석)

  • 최창근;노혁천
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.129-140
    • /
    • 1999
  • 추계론적 해석은 구조계 내의 해석인수에 존재하는 공간적 또는 시간적 임의성이 구조계 반응에 미치는 영향에 대한 고찰을 목적으로 한다. 확률장은 구족계 내에서 특정한 확률분포를 가지는 것으로 가정된다. 구조계 반응에 대한 이들 확률장의 영향 평가를 위하여 통계학적 추계론적 해석과 비통계학적 추계론적 해석이 사용되고 있다. 본 연구에서는 비통계학적 추계론적 해석방법 중의 하나인 가중적분법을 제안하였다. 특히 구조계의 공간적 임의성이 큰 특성을 가지고 있는 반무한영역에 대한 적용 예를 제시하고자 한다. 반무한영역의 모델링에는 무한요소를 사용하였다. 제안된 방법에 의한 해석 결과는 통계학적 방법인 몬테카를로 방법에 의한 결과와 비교되었다. 제안된 가중적분법은 자기상관함수를 사용하여 확률장을 고려하므로 무한영역의 고려에 따른 해석의 모호성을 제거할 수 있다. 제안방법과 몬테카를로 방법에 의한 결과는 상호 잘 일치하였으며 공분산 및 표준편차는 무한요소의 적용에 의하여 매우 개선된 결과를 나타내었다.

  • PDF

Measurement of Vibration Intensity of a Semi-Infinite Beam Using the Principle of Reciprocity (가역성 원리를 이용한 반무한보의 진동 인텐시티 측정)

  • 양귀봉;길현권;홍석윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1073-1077
    • /
    • 2001
  • The objective of this paper is to apply an experimental method based on the principle of reciprocity to measuring the structural intensity. Since only one accelerometer is used in this method it has the advantages of shortening measurement time. reducing accelerometer phase error. overcoming the limitation that the situation should be stationary during the experiment. It has been used to measure the vibration intensity of an infinite beam (beam with damped ends) and a semi-infinite beam (beam with simply supported and damped ends). Results showed that the experiment method based on the principle of reciprocity can be effectively used to measure the structural intensity.

  • PDF

A Study on Structural Intensity Measurement of Semi-infinite Beam (반무한보의 진동 인텐시티 계측에 대한 연구)

  • 이덕영;박성태
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.43-53
    • /
    • 1997
  • This paper investigated the practical use for measuring the structural intensity (power flow per width of cross section) in a uniform semi-infinite beam in flexural vibration. The structural intensity is obtained as a vector at a measurement point, One-dimensional structural intensity can be obtained from 4-point cross spectral measurement, or 2-point measurement on the assumption of far field. The measurement errors due to finite difference approximation and phase mismatch of accelerometers are examined. For precise measurements, it would be better to make the value of k$\delta$(wave number x space between accelerometers) between 0.5 and 1.0. Formulation of the relation between bending waves in structures and structural intensity makes it possible to separate the wave components by which one can get a state of the vibration field. Experimental results are obtained from 2- and 4-point measurement performed at 200mm (near field) and 400mm (far field) apart from excitation point in random excitation. the results are compared with the theoretical values and measured values of input power spectrum in order to verify the accuracy of structural intensity method, 2-point method is suggested as the practical structural intensity method.

  • PDF

Stress intensity factors for periodic edge cracks in a semi-infinite medium with distributed eigenstrain

  • Afsar, A.M.;Ahmed, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.67-82
    • /
    • 2005
  • This study analyzes stress intensity factors for a number of periodic edge cracks in a semiinfinite medium subjected to a far field uniform applied load along with a distribution of eigenstrain. The eigenstrain is considered to be distributed arbitrarily over a region of finite depth extending from the free surface. The cracks are represented by a continuous distribution of edge dislocations. Using the complex potential functions of the edge dislocations, a simple as well as effective method is developed to calculate the stress intensity factor for the edge cracks. The method is employed to obtain the numerical results of the stress intensity factor for different distributions of eigenstrain. Moreover, the effect of crack spacing and the intensity of the normalized eigenstress on the stress intensity factor are investigated in details. The results of the present study reveal that the stress intensity factor of the periodic edge cracks is significantly influenced by the magnitude as well as distribution of the eigenstrain within the finite depth. The eigenstrains that induce compressive stresses at and near the free surface of the semi-infinite medium reduce the stress intensity factor that, in turn, contributes to the toughening of the material.

Analysis of Multi-Layered Structural Systems Using Nonlinear Finite Elements-Boundary Elements (반무한 다중 구조계의 비선형 유한요소 - 경계요소 해석)

  • 김문겸;장정범;이상도;황학주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.58-64
    • /
    • 1992
  • It is usual that underground structures are constructed within multi-layered medium. In this paper, an efficient numerical model ling of multi-layered structural systems is studied using coupled analysis of finite elements and boundary elements. The finite elements are applied to the area in which the material nonlinearity is dominated, and the boundary elements are applied to the far field area where the nonlinearity is relatively weak. In the boundary element model 1 ins of the multi-layered medium, fundamental solutions are restricted. Thus, methods which can utilize existing Kelvin and Melan solution are sought for the interior multi-layered domain problem and semi infinite domain problem. Interior domain problem which has piecewise homogeneous layers is analyzed using boundary elements with Kelvin solution; by discretizing each homogeneous subregion and applying compatibility and equilibrium conditions between interfaces. Semi-infinite domain problem is analyzed using boundary elements with Melan solution, by superposing unit stiffness matrices which are obtained for each layer by enemy method. Each methodology is verified by comparing its results which the results from the finite element analysis and it is concluded that coupled analysis using boundary elements and finite elements can be reasonable and efficient if the superposition technique is applied for the multi-layered semi-infinite domain problems.

  • PDF

Scattering of Obliquely Incident Waves by a Semi-infinite Breakwater or a Breakwater Gap of Partial Reflection (부분 반사 반무한 방파제 또는 방파제 개구부에 사각으로 입사하는 파의 산란)

  • Kim, Han-Na;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.334-344
    • /
    • 2009
  • In the present paper, analytic solutions are derived for scattering of obliquely incident waves by a semi-infinite breakwater or a breakwater gap of partial reflection. In order to examine the appropriateness of the derived solutions, they are compared with the solutions derived by McIver in 1999 and Bowen and McIver in 2002 for a semi-infinite breakwater and a breakwater gap, respectively, in the case of perfect reflection. The derived analytic solutions are used to investigate the effect of reflection coefficient of the breakwater and wave incident angle upon the tranquility at harbor entrance. The tranquility is deteriorated by the reflected waves as the reflection coefficient increases and as the waves are incident more obliquely.

The Theoretical Study of the Measuring Thermal Diffusivity of Semi-Infinite Solid Using the Photothermal Displacement

  • Jeon, PiIsoo;Lee, Kwangjai;Yoo, Jaisuk;Park, Youngmoo;Lee, Jonghwa
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1712-1721
    • /
    • 2004
  • A method of measuring the thermal diffusivity of semi-infinite solid material at room temperature using photothermal displacement is proposed. In previous works, within the constant thickness of material, the thermal diffusivity was determined by the magnitude and phase of deformation gradient as the relative position between the pump and probe beams. In this study, however, a complete theoretical treatment of the photothermal displacement technique has been performed for thermal diffusivity measurement in semi-infinite solid materials. The influence of parameters, such as, radius and modulation frequency of the pump beam and the thermal diffusivity, was studied. We propose a simple analysis method based on the zero -crossing position of real part of deformation gradient and the minimum position of phase as the relative position between two beams. It is independent of parameters such as power of pump beam, absorption coefficient, reflectivity, Poisson's ratio, and thermal expansion coefficient.

The Calculation of Propeller Thrust using Semi-infinite Helical Vortices and a Wind tunnel Test (나선와류를 이용한 프로펠러 추력계산과 풍동 시험 연구)

  • Park, Young-Min;Kim, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.816-822
    • /
    • 2011
  • In this study, a program has been coded to evaluate propeller thrust rapidly following the effects of propeller shapes and the environmental facts. At this time, Semi-infinite Helical Vortices model is used to predict the induction factor which is introduced by Kawada. This program is based on Wrench's Propeller lifting line theory, and it can predict aerodynamic coefficients such as thrust, power, and efficiency. First of all, this program is compared with test results of NACA reports to verify of the reliability. Secondly, subsonic wind tunnel test has been performed following variations of propeller's rpm and inflow velocities.