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REPRESENTATION OF OPERATOR
SEMI-STABLE DISTRIBUTIONS

GYEONG Suk CHOI

ABSTRACT. For a linear operator Q from R% into R%, a > 0 and
0 < b < 1, the (Q, b, a)-semi-stability and the operator semi-stability
of probability measures on R? are defined. Characterization of
(Q, b, a)-semi-stable Gaussian distribution is obtained and the re-
lationship between the class of (Q,b,a)-semi-stable non-Gaussian
distributions and that of operator semi-stable distributions is dis-
cussed.

1. Introduction

Let R be the d-dimensional Euclidean space. In the paper [2], we
studied operator semi-stable processes on R?, which are Lévy processes
associated with operator semi-stable distributions. Under the condition
of fullness, descriptions of operator semi-stable distributions on R¢ were
obtained by R. Jajte [4,5], W. Krakowiak [6], A. Luczak [7,8], V. Chorny
[3] and others. Here fullness means that the support of the distribution
is not contained in any (d — 1)-dimensional hyperplane in R

Let Aut(R%) be the set of invertible linear operators from R% onto R%.
Let {Y,: n=1,2,---} be asequence of i.i.d. (=independent identically
distributed) random variables on R?. In [4], R. Jajte investigated the
weak limit of distributions of

(1.1) An(Yl +Yo+--- +Ykn)+bn,

where A, € Aut(R?), b, € R? and k—"lil — r with some r € [1,00).
The limit distribution p of (1.1) is called an operator semi-stable dis-
tribution. When the convergence of (1.1) holds with b, = 0, we call u
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a strictly operator semi-stable distribution. In this paper, we consider
all operator semi-stable distributions on R? without the assumption of
fullness. Let End(R%) be the set of linear operators from R? into R4
The identity operator is denoted by I. For B € End(R%) and r > 0,
we define 78 = exp{Blogr} = Y (Blogr)*/n!. For T € End(R%), we
write (Tw)(E) = u(T~*(E)). We denote the b-th convolution power of
p by pb. Let M, (R?) be the class of linear operators on R¢ all of whose
eigenvalues have positive real parts.

Fix o > 0 and Q@ € M, (R%). An infinitely divisible distribution p
on R? is called operator semi-stable with exponent (Q, a) if there are
a number b € (0,1) and a vector c(b) € R such that

(1.2) W = b2 x gy,

Here d.(3) is the delta distribution at c(b). When (1.2) is satisfied,
we call p (@, b, a)-semi-stable. It is called strictly operator semi-stable
with exponent (Q, ) if there is b € (0,1) such that

(1.3) b =%,

When (1.3) is satisfied, we call u strictly (Q,b, a)-semi-stable. The
above definition of (Q), b, a)-semi-stable distribution is described with-
out the assumption that p is full. If yx is a (Q,b, a)-semi-stable dis-
tribution on R?, then u is an operator semi-stable distribution on R4.
But the converse is not true. The counterexamples are given at the
end of this paper. The (Q,b, ) of a distribution satisfying (1.2) is not
uniquely determined by u. If p is semi-stable with exponent « in the
sense of [1], then u is an operator semi-stable distribution with expo-
nent (I,a). We note that u is (Q, b, a)-semi-stable if and only if u
is (71Q,b*,1)-semi-stable. The distribution satisfying (1.2) for every
b € (0,00) is operator stable, which was introduced by M.Sharpe [13].
It is (@, a)-stable in the sense of [12]. By introducing the terminology
(@,b, @), the relations between operator semi-stable distributions and
semi-stable distributions become clearer. The characterization of full
operator semi-stable distributions on R? is investigated by many au-
thors. But they did not treat the whole structure of Gaussian operator
semi-stable distributions.
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The main purpose of this paper is to obtain necessary and sufficient
conditions for (@, b, a)-semi-stable Gaussian distributions. The descrip-
tions for full operator stable distribution were developed by many au-
thors, but the complete characterization of Gaussian operator stable
distributions is done by K. Sato [10] and K. Sato-M. Yamazato [12].
Our description of (Q, b, a)-semi-stable Gaussian distributions in this
paper is an extension of the results in (Q, a)-stable case in [10, 12] to
(@, b, a)-semi-stable case.

In Section 2, we write some results and lemmas we use in the sub-
sequent sections. In Section 3, we characterize (@,b,)-semi-stable
Gaussian distributions, and in Section 4, we rewrite a necessary and
sufficient condition for (Q,b, @)-semi-stable purely non-Gaussian dis-
tributions on R%. Its necessity part is similar to that of [3]. Relations
between (Q, b, a)-semi-stable distributions and operator semi-stable dis-
tributions are given in Section 5.

2. Preliminaries

For z,y € R%, we denote the Euclidean inner product of z and y by
(z,y) and the Euclidean norm of z by |z|. Lévy shows that a distribu-
tion u on R? with characteristic function fi(z) is infinitely divisible if
and only if 7i(z) has form

A(2) = exp {iw, -1

5 (Az, 2) + /Rd G(z, x)u(d:z:)} ,

where G(z,z) = €% —1—i{z,z)(1+]|z|?)~!, v is a vector in R%, Ais a
symmetric nonnegative definite operator and v is a measure (called Lévy
measure) on R? satisfying »({0}) = 0 and [|z|2(1 + |z|?) " v(dz) <
oo. This representation is unique and called the Lévy representation
(v,A,v). We call 4 a purely non-Gaussian in the case of A = 0. If
v =0 and A = 0, then we call ;4 a centered purely non-Gaussian. If
v =0 and v = 0, then p is called a centered Gaussian. We denote the
adjoint of a linear operator T by 7.

PROPOSITION 2.1. Fix b € (0,1), @ > 0 and Q € M (R?). Let p
be (Q, b, a)-semi-stable on R%. If T ¢ Aut(R?), then Ty is (TQT™1,b,
«)-semi-stable on R%.
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Proof. From the fact that T-16QT = b7 9T we see that
ﬁ(z)ba — ﬁ(leT/z)ei(c(b),T/z) — ﬁ(T’b(TQT_l)'Z)ei(C(b),T’z)
_ T(BTQT™ ) giTe). ), -

We fix Q € M (R%). Let u be an operator semi-stable distribution
with exponent (Q, ). For a real symmetric nonnegative definite op-
erator A, ¢4(z) stands for (Az,z) for 2 € C%. Here { ) denotes the
Hermitian inner product on C%. We write (b"?v)(E) = v(b~"?E).

LEMMA 2.2. Fix b € (0,1), Q € M (R% and o > 0. Let p be
infinitely divisible on R® with the Lévy representation (7, A,v). Then

a necessary and sufficient condition for pu to be (Q,b, @)-semi-stable is
that, for any integer n,

(2.1) pa(b"? z) = "pa(z) for z € CY
and
(2.2) (b"Pv)(E) = b"*(E) for E € B(R%).

Proof. If p is (@, b, )-semi-stable, then, iterating (1.2), we get, for
any positive integer m,

p = b Ru x 5(c(b™)),

where c(b™) = b%c(b{™~1)) + b(m—1)Q¢(b). Hence a necessary and suffi-
cient condition for p to be (Q, b, a)-semi-stable is that, for any positive
integer m,

da(b™? 2) = b"p4(z) and (b™9)(E) = b™u(E).

From the facts that ¢ 4(2) = ¢A((bb‘1)le) =b2p (b~ 9 z) and v(E) =
(bb_l)QV(E) = b*b~Qu(E), we see that

Pa(b™92) = b %p4(z) and (b%W)(E) = b °v(E),
which implies that, for any positive integer m,

$a(b7™Vz) =b"ga(2) and (b"W)(E) =bw(E). [
The following lemmas are known. Proofs are omitted.
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LEMMA 2.3. (Lemma 6.3 in [10] and Lemma 3.1.in [12]). Let z €
C?. If A is real symmetric nonnegative definite and ¢ A(z0) = 0, then
AZO =0.

LEMMA 2.4 (Lemma 5.7 in [10]). If Q € M (R%), then every z in
R? — {0} is uniquely expressed as z = u9¢ with eSS ={eR:
[€]=1,|]u®¢|>1 forall w>1}andu>0.

3. Gaussian operator semi-stable distributions

In the following Theorem 3.1, we obtain the characterization of
(@, b, @)-semi-stable Gaussian distributions on R?. An example which
shows that the class of Gaussian operator semi-stable distributions is
strictly bigger than that of Gaussian operator stable distributions is
given in a recent paper [9]. For @ € M, (R%), we write B = <. For
z € C4, T stands for the complex conjugate of z, that is, each com-
ponent of T is the complex conjugate of the corresponding component
of z. Let ¥;,---,9,, be all distinct eigenvalues of b2. Let f(£) be
the minimal polynomial of 89 with f(&) = fi(£)™ -+ fo(€)™®, where
fi(€) =& —9; for 1 < j < p. We denote the kernel of (Q —9;)™ in C¢
by Ej;, that is, E; is the eigenspace of % in the wide sense associated
with the eigenvalue 9; for 1 < j < p. Denote by P; the projector onto
E; in the decomposition

(3.1) CdT—‘El@--'@Ep.

Let
E} =Kernel(B'—9;1)™ in C% for 1<j<p.

Then we have
(3.2) C=FE{ & - 0E,

We see that E; and Ey are orthogonal for j # k and P/ is the projector
of C* onto Ej in the decomposition (3.2). Let J = {j : 1 < j <
2 lﬂjIZ = ba}'
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THEOREM 3.1. Fix b € (0,1), « > 0 and Q € M, (R%). Let u be
infinitely divisible on R* with the Lévy representation (v,A,0). Then
a necessary and sufficient condition for u to be (Q, b, a)-semi-stable is
that

(3.3) AP/ =0 forall j¢J,
(3.4) (B—19;)AP/ =0 forall jeJ.

We will use the following lemma in the proof of Theorem 3.1. The
proof is given in [10].

LEMMA 3.2 (Lemma 6.4 in [10] and Remark 3.1 in [12]). Let A be
real symmetric nonnegative definite. Then

(B—9;)AP;=0 for 1<j<p
if and only if

(3.5) PAP.=0 for j#k,
(3.6) AB' —-T)Pi=0 for 1<j<p.

Proof of Theorem 3.1. Suppose that u is a (Q, b, @)-semi-stable dis-
tribution with Lévy representation (v, A,0). Then we assert that, for
any positive integer m and zy € C¢,

(3.7) (B'=9;)™20=0 implies A(B' —1,)z = 0.

For the proof of (3.7), we use induction in m. For m = 1, (3.7) is trivial.
Suppose that (3.7) is true for m — 1 in place of m, and assume (B’ —
9;)™z0 = 0. Let us write ﬁ_j—k(B’ —9;)%2zp = 2 for each nonnegative
integer k. Since (B’ —9;)™z; = (B' —9;)™ (B’ —9;)2x = 0 for k > 0,
we have A(B' — ;)22 = 0 for k > 0 by the induction hypothesis.
Hence we see that, forn =1,2, -,

AB™z =9 Alzo + nzi)
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and
$a(B™z0) = 9;1*"[pa(20) + 2nRe(Az0, 21) + n®Pa(21)]-

We write
A(n) = 2nRe(Azy, z1) + n2da(z1)-

Noticing that by Lemma 2.2
¢a(B™20) = b*"pa(20),

we see that b*"¢ 4(z0) = |9;]2"[p a(20) +A(n)]. We consider three cases:
b = |19j|2, b < |’l9j12 and b* > '19]'|2.

(1) 5> = |9;|2. In this case, we have that A(n) = 0. If ¢4(z1) # 0,
then we have that A(n) — oo as n — oo, which is a contradiction.
Thus, ¢4(21) = 0, from which follows Az; = 0 by Lemma 2.3.

(2) b® < |95]2. In this case, we have that

(h%)"muo) = $a(20) + A(n).

Letting n — oo, we get that (%)" — 0. This leads to the fact that
A(n) — —¢a(z) as n — oo. But we have A(n) — oo as n — oo if
®a(21) # 0. Hence, we see that Az; = 0.

(3) b* > |9;|%. In this case, we have that

19;1% .
(e )" [Pa(z0) + A(n)] = da(20)-

Since (I%c',JLz)”n2 — 0 as n — oo, we see that ¢4(z0) = 0. Hence, we
have that A(n) = 0. Thus, by the same method as (1), we see that
Az1 =0.

Now we have proved that (3.7) is true. Let z € E’. From (3.7) we
see that

¢4(B'z) = (AB'z,B'z) = (AV;2,B'z) = 9;(Az, B'z)
=9;(z, A9;2) = [9;[*pa(2).
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If 5 ¢ J, then, by (2.1), ¢4(z) = 0, which is (3.3).

Suppose that z € E, w € Ej and j # k. If j ¢ J or k ¢ J, then
(Az,w) = 0 by (3,3). Let us show that (Az,w) = 0 when j € J and
k € J. Using (2.1) and (3.7), we get

da(B™(z+ w)) = b"da(z + w)
=b"pa(z) + b°"pa(w) + 20°" Re(Az, w)
and
da(B"™(z +w)) = b*"pa(z) + b¥"pa(w) + 2ReD; 9™ (Az, ).
Hence, we see that Reﬁ_jnt?k"(Az, w) = b*"Re(Az,w) forn=1,2,---.
Thus, we get Re(Az,w) = 0. We also get Im(Az,w) = Re(Az,w) = 0.
Hence (Az,w) = 0. Now we have (3.4). In fact, if z € E}, j € J, and
w € C%, then
(B —¥5)Az,w) = (Az, (B’ — 9;)w) = (Az, (B’ — 9;) Pjw)
= (2, A(B' = 0;)Plw) = 0
by (3.7).
Conversely, suppose that A satisfies (3.3) and (3.4). From Lemma

3.2, we see that (3.5) and (3.6) hold. Thus by (3.3) and (3.5), we see
that

Jj=1 Jj=1 jeJ

P 4
da(B'z) = b4 (Z P;B'z) = ¢a(P/B'z) =Y _ ¢a(P|B2).

By (3.6) and by B'P] = P/B'P/, we have that
$a(P}B'z) = ¢a(B'Pj2) = [9;°¢a(Pjz) = b%¢a(F;2)

for 7 € J. Hence ¢p4(B'z) = b%¢ 4(z). The proof is complete. O
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4. Purely non-Gaussian operator semi-stable distributions

We begin with some notation which follows [10, 11, 12]. We fix an
arbitrary @ € M (R%). Let o; = a;+i8j, 1 < j < q+2r, be all distinct
eigenvalues of (), where o; and §; are real numbers such that 8; = 0 for
1<j<q,B;#0forq+1 < j < q+2r and a;+i8; = ajir — 1854, for
g+1 < j < g+r. Here q and r are allowed to be zero. We note that p <
g+ 2r and the set {¢1,--- ,9p} coincides with the set {47, ,b7et2r},
where b7 = b%¢ if §; = [ + 2nm with some integer n. Let g(§) be
the minimal polynomial of @ with g(£) = g1 (&)™ - - gg+(€)"**", where
9;(&) =€—a;for1 <j<gq, g;(€) = (£ —a;)°+f;  forg+1 < j < g+r
and nj, 1 < j < g+ r are positive integers with E;’ZI nj < d. Let W;
be the kernel of g;(Q)% in R%, 1 < j < g+ r. The projector onto W,
in the direct sum decomposition

RI=W1® - ®Wyr

is written as U;. We denote the kernel of (Q — 0;)™ in Ct1<j<
g + 2r, by Vj;, that is, V; is the eigenspace of @ in the wide sense
associated with the eigenvalue o; for 1 < 57 < g+ 2r. Denote by T; the
projector onto V; in the decomposition

(4.1) Cl=V® - &V

Weset J(o) ={j:1<j<qg+2ra; =%}, Kla)={j:1<j<
g+r, a; > %}, WK(Q) = @jeK(a) Wj and SK(Q) = {£ € WK(a) :
€] = 1,[u%¢| > 1 for all u > 1}. We write for z # 0 in R%, a(z) =
min{e; : 1 < j < g+ 2r,Tjz # 0}, and for j such that Tjz # 0, we
set n(z,j) = max{n > 0: (Q — 0;)"Tjx # 0}. For z # 0 in R%, we
denote n(zr) = max{n(z,j) : 1 < j < g+ 2r,Ujz # 0,0 = a(z)}, and
N =max{n;:1<j < q+2r}.

The following theorem characterizes the class of all (Q,b, &)-semi-
stable purely non-Gaussian distributions without assuming fullness.
The first necessary and sufficient condition for a purely non-Gaussian
distribution on R% to be (Q, b, a)-semi-stable was obtained in [7,8]. But,
from the results in [7,8], it is not easy to find the relations between the
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Lévy measure of operator semi-stable distributions and that of opera-
tor stable distributions. With this consideration, we rewrite the Lévy
measure of a (Q, b, a)-semi-stable distribution in a form similar to that
of the Lévy measure of an operator stable distribution. Our description
of the Lévy measure of a (Q, b, o)- semi-stable distribution in the case
of @ = I is that of a semi-stable distribution in [1]. Let Ry = (0, 00),
the open half line. Denote the support of a measure p by Spt p. The
indicator function of F is denoted by Ig(z).

THEOREM 4.1. Fix b € (0,1), @« > 0 and Q € M (R%). Let u be
infinitely divisible on R® with the Lévy representation (v,0,v). Then
a necessary and sufficient condition for p to be (Q,b, &)-semi-stable is
that

(4.2) v(E) = /S o A(de€) /0 N IE(qu)d{:M}

ua

for all Borel sets E C R%, where ) is a finite measure on S K(a) HZS‘) is
nonincreasing in u, H¢(u) is right-continuous in u and measurable in &,
H¢(1) =1 and H¢(bu) = He(u) for any u and €. If p is (Q, b, a)-semi-
stable, then the measure ) is unique and the function H¢(u) is unique
for A-almost every £ € Sk (). For any finite measure A on Sk (o) and for
any function H satisfying the conditions above, there exists a (Q, b, a)-
semi-stable purely non-Gaussian distribution p with the Lévy measure
v of (4.2).

Since Wi (o) is Q-invariant, using Lemma 2.4, we see that any point
z # 0 in Wi (,) has unique expression z = u®¢ with ¢ € Sk(a) and
u > 0. From Lemma 4.1 in [11] (see Lemma 5.1 in [12] or Lemma 5.6
in [10]), we see that there is C; such that
(4.3) [u@e| < CLuc®|logu|N ! for 0 <u<1/e.
Put h(u) = li% Then, by (4.3), there is C2 such that
(4.4)  h(lu9]) < Cou®*O|logu/?"? for 0<u<1/e.

Here C) and C5 are constants independent of u and £.
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LEMMA 4.2. If p is (Q,b, a)-semi-stable, purely non-Gaussian with
Lévy measure v, then
Sptv C WK(Q).

Proof. Define a finite measure v’ by V/(E) = [ h ]xl)u (dz) for F €
B(R?). Let n be a positive integer such that 0 < " < 1. By Lemma
2.2, we obtain that

V(b"QE) = b / h(|b"9z|) g (x)v(dz).

Using Lemma 4.1 in [11], we see that there is a positive function bo(zx)
for  # 0 in R? such that

pne / h(6"92]) I (@)v(da) > b= / h(bo(2)b" |z]) [(z)v(da).

Let zo ¢ Wi (a). Choose a bounded open neighborhood E of zg such
that a(x) < 5 for z € E. By Fatou’s lemma we have

liminf, oot/ (A" E)
> / liminf,,_,eob"*h(bo(z)6"*®)|z|) I (x)v(dz).

Let Ey be the set of z € E such that a(x) < §, and E; be the set of
x € E such that a(x) = §. Then,

00 for ze€ £,

* liminf, oo™ "*h(bo(2)b"*)|z]) = {bo(m)QIJSl? for =€ B

Hence, we see that v(E7) = 0. By (4.4), we have that
|b"Qz| < C16"% |logb™|V 7 z| for z € Ej,
if b < 1/e. This leads to liminf,_,.t/(b"YEz) = v/({0}) = 0. Since

liminf,, oo/ (b"QEy) > / bo ()2l s, (2)v(dz),

we get v(E3) = 0. Hence v(FE) = 0, which means that zo ¢ Spt v. 0O
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Proof of Theorem 4.1. Suppose that u is (Q, b, a)-semi-stable. For
any B € B(Sk(a)), define A(B) = v({u®¢ : € € B,u > 1}) and
N(s,B) = v({u®¢ : € € B,u > s}). Then for any positive real number
r, we can choose integer m such that r > ™ > 0, so

0 < N(r,B) < N(b™,B) = b"")(B).

Hence N(r, B) is absolutely continuous with respect to A. Thus for

each positive real number r, there is a nonnegative measurable function
N¢(r) of € such that

N B) = [ Ner)NdE), B € B(Skcw).

Here N¢(r) is uniquely defined for A-almost every . We can take N¢(r)
nonincreasing right-continuous in r. For E = {u®¢ : £ € B,u € F}
with F' € B(R;), we obtain

W(E) = — /B A(d6) /F dN (u).

From the fact that v(b~?{u%¢ : ¢ € B,u € (s,00)}) = v({u9¢ : ¢ €
B,u € (b7's,00)}) = b?v({u®¢ : £ € B,u € (s,00)}), we see that
Ne(bu) = b~ *N¢(u). Putting Ne(u) = He(u)u™®, we see that %—(al) is
nonincreasing in u, H(u) is right-continuous in u and measurable in
§, He(1) = 1 and H¢(bu) = He(u) for any u and £. Since B(Wk (q))
is generated by sets E of the above form, we get (4.2) for all E €
B(Wk ()), which shows (4.2) by Lemma 4.2.

Conversely, assume that A is a finite measure on Sk (,) and define a
measure v on R? by (4.2). Let o™ = min{e; : 1 < j < g+ 2r,05 >
$} and let o™t = max{o; : 1 < j < ¢+ 2r,a; > §}. Then ot <
a(§) < o™t for £ € Sk(a)- Let M be the positive integer satisfying
1<ev™™ <« bM For any £ € Sk(a), We have the following. By
(4.4), we see that

1

[ e {=He}

oo e—lbn
¢ 5 —H,
< Z / u2°‘(*)|logu|2N_‘d {——5@} )
n=0v¢

—1pn+1 ue
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For n=0,1,---, we have that

e—lb'n
/ u2a(£)l logu[2N_2d { —He(u) }
e—lbn+1 ua
e—l n _H
< |(n+1)logb_1|2N—2/ “2a(€)d{_f¢x(i)},
——1bn+1

because | logu| < |log(e™6"+!)| = [(n+1)logb— 1| for 71" <u <
e~1b7. Letting u = b" 1My, we obtain that

—1n

e” b _
e—1pn+1 ue
e~ lp—M—1 —H( )
_ p2nt M) (a(O)- %) / p2e®g [ THe@W |
._1b M ’Uo‘
Since flood{ H"’(v)} H¢(1) = 1, we have that
e——lb-—Mv—l
pRnt 1+ M) (a(O)— ) / p2e©g | ~He()
—1p—-M v
b—M—l
< b2(n+1+M)(a+—-g— / v2a(£)d —Hg(’l))
< . o
< b2(n+1+M)(a+———%)b—Q(M-}—l)a({) /wd{—Hﬁ(v)}
< . v

< b2(n+1+M)(a+——%)-—2(M+1)a++.

Hence

/ @ /0 (%)) {Eel

oo
< CoA(Skta) 3 l(n + 1) log b — 12N -2p(HLEM) (@ - ) —2(M D)™
n=0
< 00,
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since ot — § > 0. Since A(-) < 1, we see that

Lih(luQ§|>d{i§ﬂ}std{iZ+M}.

Using the fact that

sup Hg(u) o sup H{(U) — sup uaHg—‘(;u) S b_aHg(l) = b‘a

u>0 1<u<h? 1<u<h1 [
and
: : , He(u) -1
— — a > (64 — (64
) =, i He) = inf " 20 HGT) =,
we obtain that lim,_se0 — Hft W) _ 0. It follows that
00 - -1
/ d{ H&(u) } — H€(€ ) < b2,
e—1 ue e ¢
Hence
° -H
[ e [ nuoena{ L < epmex(si) < oo
Sk(a) e-! u
Therefore
/ h(lz|)v(dz) < oo.
Rd

Hence v is the Lévy measure of a purely non-Gaussian infinitely divisible
distribution . It is easy to see that v satisfies (2.2). Thus, uis (@, b, a)-
semi-stable.

Let p1 be (Q, b, @)-semi-stable and centered purely non-Gaussian with
Lévy measure v. Let W, W, be the smallest linear subspaces that
contain Spt u, Spt v, respectively. From Lemma 4.2, we see that W,
is a linear subspace of W (). Using Lemma 5.2 and Theorem 5.2 in
[12], we get the following remark.
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REMARK 4.3. Suppose that u is (@, b, @)-semi-stable and centered
purely non-Gaussian with Lévy measure v. Then W, = W,,, p is full
in W, and W, is b%-invariant.

REMARK 4.4. Suppose that p is a (Q, b, a)-semi-stable distribution
on R? with Lévy representation (0,0, ). If the subspace W,, is contained
in R = {z = (2;)i=1,2 : z2 = 0}, then u is a semi-stable distribution
with some exponent & on R in the sense of [1].

5. Relations between (Q, b, a)-semi-stable distributions and
operator semi-stable distributions

R. Jajte in the Theorem of [4] described that, if u is full, then a
necessary and sufficient condition for p to be an operator semi-stable
distribution is that it is infinitely divisible and there exist a number
a € (0,1), a vector co € R?, and A € Aut(R?) such that

(5.1) u* = Ap * be,-
In [3], V. Chorny pointed out that the relation (5.1) was equivalent to
Mb = bQ,U‘ * 501

with some b € (0,1), Q € M, (R?) and ¢; ¢ R%. This distribution is a
(Q, b, 1)-semi-stable distribution.

The following Remarks 5.1 and 5.2 for operator semi-stable distri-
butions are given in R. Jajte [4].

REMARK 5.1. Fix b € (0,1), @ > 0 and Q € M, (R%). Let u be
(Q, b, a)-semi-stable on R%. Then p is an operator semi-stable distribu-
tion.

REMARK 5.2. If u is a full operator semi-stable distribution on R?,
then u is (Q,b, a)-semi-stable on R? with some b € (0,1), & > 0 and
Q € M. .(R?).

PROPOSITION 5.3. If u is an operator semi-stable distribution on
R% and T € End(R?), then Ty is an operator semi-stable distribution.
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Proof. We choose T;, € Aut(R?) such that T;, — T By the definition
of an operator semi-stable distribution, there are A, € Aut(R?) and
a, € R? such that

lim Apu* %6, = p,

n—00

where k; 'k, 1 — r for some r € [1,00). Hence, we have that
lim T, Anu®™ % 67,4, = Tp.
n—o0
This shows that T'u is an operator semi-stable distribution. O

In [10,14], there are examples of operator stable distributions that
are not (Q,a)-stable. Modifying it, we get the following examples.
These will show that the converse of Remark 5.1 is not true without
the condition of fullness.

3

EXAMPLE 5.4. Let d = 2, Q = (f 0) and & = 2-% (_11). Then

02
u® = (“0% 02> and u®€¢ = 272 (1‘32) Fix b € (0,1) and a € (0,2).
We choose a positive number Cy such that Cp = (| If—gg | +1 < 1. Let
He,(u) = G, 2T Jogu) +1
¢o(u) = Cp cos Tog ogu .

Then the function He,(u) satisfies the conditions in Theorem 4.1. We
consider the (@, b, a)- semi-stable distribution p having the Lévy rep-
resentation (0, 0,v) with

uE) = | wIE<uQ§o>d{%§§@}.

This shows that u is an operator semi-stable distribution by Remark

51. Let T = ((1) (1)) Then, by Proposition 5.3, Tu is an operator

semi-stable distribution. We have, for some positive real number s,
Spt Tv = {z = (z;)i=1,2 : 71 < s,z2 = 0}.
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Suppose that Tu is a (Q,b,&) -semi-stable distribution on R? with
some b, & and Q € M, (R?). Then, by Remark 4.4, T is regarded as
a semi-stable distribution with some exponent on R in the sense of [1].
But, if the support of the Lévy measure of a semi-stable distribution
on R is not contained in (—o00,0], then it must be unbounded to both
directions. So we get a contradiction. Thus we conclude that there are
no numbers b, & and Q € M, (R?) such that Ty is a (Q, b, &)-semi-
stable distribution on R2.

EXAMPLE 5.5. Let d = 2. Let Q, T, & be as in Example 5.4. Fixa €
(0,2). Let n be an integer. Consider a (Q), b, &)-semi-stable distribution
u having Lévy representation (0,0, v) with

v(E) = /O ~ Ie(u®)d { —_Iffg(“) } ,
Hey (w)

where ——5°= =3, . 5" We see that
Spt Tv = {z = (Ti)im12 : 71 = 273 (b™) % — 273 ("), 2y = 0}.

By a similar argument to the previous example, we can show that Tu
is an operator semi-stable distribution on R2. But, we can not find
numbers b, & and Q € M, (R?) such that Ty is a (Q, b, &)-semi-stable
distribution on R2.
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