• Title/Summary/Keyword: Semi rigid

Search Result 352, Processing Time 0.026 seconds

Stability and P-Δ Analysis of Generalized Frames with Movable Semi-Rigid Joints (일반화된 부분강절을 갖는 뼈대구조물의 안정성 및 P-Δ 해석)

  • Min, Byoung Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.409-422
    • /
    • 2013
  • For stability design and P-${\Delta}$ analysis of steel frames with semi-rigid connections, the explicit form of the exact tangential stiffness matrix of a generalized semi-rigid frame element having rotational and translational connections is firstly derived using the stability functions. And its elastic and geometric stiffness matrix is consistently obtained by Taylor series expansion. Next depending on connection types of semi-rigidity, the corresponding tangential stiffness matrices are degenerated based on penalty method and static condensation technique. And then numerical procedures for determination of effective buckling lengths of generalized semi-rigid frames members and P-${\Delta}$ and shortly addressed. Finally three numerical examples are presented to demonstrate the validity and accuracy of the proposed method. Particularly the minimum braced frames and coupled buckling modes of the corresponding frames are investigated.

Probability-based structural response of steel beams and frames with uncertain semi-rigid connections

  • Domenico, Dario De;Falsone, Giovanni;Laudani, Rossella
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.439-455
    • /
    • 2018
  • Within a probabilistic framework, this paper addresses the determination of the static structural response of beams and frames with partially restrained (semi-rigid) connections. The flexibility of the nodal connections is incorporated via an idealized linear-elastic behavior of the beam constraints through the use of rotational springs, which are here considered uncertain for taking into account the largely scattered results observed in experimental findings. The analysis is conducted via the Probabilistic Transformation Method, by modelling the spring stiffness terms (or equivalently, the fixity factors of the beam) as uniformly distributed random variables. The limit values of the Eurocode 3 fixity factors for steel semi-rigid connections are assumed. The exact probability density function of a few indicators of the structural response is derived and discussed in order to identify to what extent the uncertainty of the beam constraints affects the resulting beam response. Some design considerations arise which point out the paramount importance of probability-based approaches whenever a comprehensive experimental background regarding the stiffness of the beam connection is lacking, for example in steel frames with semi-rigid connections or in precast reinforced concrete framed structures. Indeed, it is demonstrated that resorting to deterministic approaches may lead to misleading (and in some cases non-conservative) outcomes from a design viewpoint.

Pushover analysis of gabled frames with semi-rigid connections

  • Shooshtari, Ahmad;Moghaddam, Sina Heyrani;Masoodi, Amir R.
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1557-1568
    • /
    • 2015
  • The nonlinear static analysis of structure, which is under the effect of lateral loads and provides the capacity curve of the structure, is defined as a push-over analysis. Ordinarily, by using base shear and the lateral displacement of target point, the capacity curve is obtained. The speed and ease of results interpretation in this method is more than that of the NRHA responses. In this study, the nonlinear static analysis is applied on the semi-rigid steel gabled frames. It should be noted that the members of this structure are analyzed as a prismatic beam-column element in two states of semi-rigid connections and supports. The gabled frame is modeled in the OpenSees software and analyzed based on the displacement control at the target point. The lateral displacement results, calculated in the top level of columns, are reported. Furthermore, responses of the structure are obtained for various support conditions and the rigidity of nodal connections. Ultimately, the effect of semi-rigid connections and supports on the capacity and the performance point of the structure are presented in separated graphs.

The Structural Behavior of the Frames with Semi-Rigid Connections Using Reformed T-stubs (개량 T-stub를 이용한 반강접 골조의 거동)

  • Lee, Myung Jae;Cho, Won Hyuck
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.339-350
    • /
    • 2000
  • The objective of this study is to investigate the structural behavior of the beam to column connection with reformed T-stubs and to ascertain the application of semi-rigid connection with reformed T-stubs to middle high rise buildings. The tests of steel frame using semi-rigid connections with reformed T-stub and existing T-stub were performed under cyclic loading condition. Finite element analysis was also carried out and the results of FEM were compared with results of tests. The thickness of reformed T-stub and the distance of bolt were used for parameters in the analysis. The structural behaviors of reformed T-stub were understood qualitatively and the possibility of application of semi-rigid connections with reformed T-stubs was ascertained.

  • PDF

A Study of Nonlinear Unstable Phenomenon of Framed Space Structures Considering Joint Rigidity (절점 강성을 고려한 공간 구조물의 비선형 불안정 거동에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Hwang, Kyung-Ju;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.1 s.7
    • /
    • pp.87-97
    • /
    • 2003
  • The structural system that discreterized from continuous shells is frequently used to make a large space structures. As well these structures show the unstable phenomena when a load level over the limit load, and snap-through and bifurcation are most well known of it. For the collapse mechanism, rise-span ratio, element stiffness and load mode are main factor, which it give an effect to unstable behavior. In our real situation, most structures have semi-rigid joint that has middle characteristic between pin and rigid joint. So the knowledge of semi-rigid joint is very important problem of stable large space structure. And the instability phenemena of framed space structures show a strong non-linearity and very sensitive behavior according to the joint rigidity For this reason In this study, we are investigating to unstable problem of framed structure with semi-rigidity and to grasp the nonlinear instability behavior that make the fundamental collapse mechanism of the large space frame structures with semi-rigid joint, by proposed the numerical analysis method. Using the incremental stiffness matrix in chapter 2, we study instability of space structures.

  • PDF

A study of continuous stem girder systems

  • Kim, Boksun;Wright, Howard D.;Cairns, Roy
    • Structural Engineering and Mechanics
    • /
    • v.11 no.5
    • /
    • pp.469-484
    • /
    • 2001
  • A new beam system comprising two cantilever stems and an interspan composite beam has been developed and its design philosophy is described in this paper. The system provides the equivalent of a semi-continuous beam without the requirement to calculate the moment rotation capacity of the beam-to-column connection. The economy of braced frames using the system has been investigated and compared with simple, continuous or semi-rigid systems. It is shown that the costs of the proposed system are similar to the semi-rigid system and cheaper than both the simply supported and rigid beam systems. Two tests have been carried out on 6 meter span beams, which also incorporated an asymmetric flange steel section. The behaviour of the system is presented and the test results are compared with those obtained from the theory.

Advanced analysis for planar steel frames with semi-rigid connections using plastic-zone method

  • Nguyen, Phu-Cuong;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1121-1144
    • /
    • 2016
  • This paper presents a displacement-based finite element procedure for second-order distributed plasticity analysis of planar steel frames with semi-rigid beam-to-column connections under static loadings. A partially strain-hardening elastic-plastic beam-column element, which directly takes into account geometric nonlinearity, gradual yielding of material, and flexibility of semi-rigid connections, is proposed. The second-order effects and distributed plasticity are considered by dividing the member into several sub-elements and meshing the cross-section into several fibers. A new nonlinear solution procedure based on the combination of the Newton-Raphson equilibrium iterative algorithm and the constant work method for adjusting the incremental load factor is proposed for solving nonlinear equilibrium equations. The nonlinear inelastic behavior predicted by the proposed program compares well with previous studies. Coupling effects of three primary sources of nonlinearity, geometric imperfections, and residual stress are investigated and discussed in this paper.

An Analytical Study on Semi-Rigid Connections of 6-Story Unbraced Steel Structures (6층 비가새 철골구조물의 반강접 접합부에 관한 해석적 연구)

  • Kim, Jin Hyoung;Kang, Suk Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.425-433
    • /
    • 1999
  • Structural analysis and design of steel frames is usually conducted under the assumption that beam-to-column connections are either fixed or pinned. In reality, each connection possesses a certain rotational stiffness. In this study, structural analysis program is developed, which takes into account the nonlinear behavior of framed structures including flexibility of semi-rigid connections and member geometric nonlinearity. Effective semi-rigid connections for a 6-story unbraced steel frame are suggested and the effect of flexible connections on the behavior of the structure are studied.

  • PDF

Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm

  • Degertekin, S.O.;Hayalioglu, M.S.;Gorgun, H.
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.535-555
    • /
    • 2009
  • The harmony search method based optimum design algorithm is presented for geometrically non-linear semi-rigid steel frames. Harmony search method is recently developed metaheuristic algorithm which simulates the process of producing a musical performance. The optimum design algorithm aims at obtaining minimum weight steel frames by selecting from standard set of steel sections such as European wide flange beams (HE sections). Strength constraints of Turkish Building Code for Steel Structures (TS648) specification and displacement constraints were used in the optimum design formulation. The optimum design algorithm takes into account both the geometric non-linearity of the frame members and the semi-rigid behaviour of the beam-to-column connections. The Frye-Morris polynomial model is used to calculate the moment-rotation relation of beam-to-column connections. The robustness of harmony search algorithm, in comparison with genetic algorithms, is verified with two benchmark examples. The comparisons revealed that the harmony search algorithm yielded not only minimum weight steel frames but also required less computational effort for the presented examples.

A Refined Semi-Analytic Sensitivity Study Based on the Mode Decomposition and Neumann Series Expansion (I) - Static Problem - (강체모드분리와 급수전개를 통한 준해석적 민감도 계산 방법의 개선에 관한 연구(I) - 정적 문제 -)

  • Cho, Maeng-Hyo;Kim, Hyun-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.585-592
    • /
    • 2003
  • Among various sensitivity evaluation techniques, semi-analytical method(SAM) is quite popular since this method is more advantageous than analytical method(AM) and global finite difference method(FDM). However, SAM reveals severe inaccuracy problem when relatively large rigid body motions are identified fur individual elements. Such errors result from the numerical differentiation of the pseudo load vector calculated by the finite difference scheme. In the present study, an iterative method combined with mode decomposition technique is proposed to compute reliable semi-analytical design sensitivities. The improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes and the error of SAM caused by numerical difference scheme is alleviated by using a Von Neumann series approximation considering the higher order terms for the sensitivity derivatives.