본 연구는 객체 재사용과 재공학을 위해 레거시 시스템의 인터페이스 정보로부터 의미 있는 정보를 추출하고 새로운 시스템에 통합될 수 있도록 하기 위한 기존 레거시 시스템의 인터페이스에 기반 한 객체추출 기법을 제안한다. 본 논문에서 제안하는 객체추출 기법은 인터페이스 사용 사례 분석 단계, 인터페이스 객체 분할 단계, 객체구조 모델링 단계, 객체 모델 통합 단계 등 4단계로 구성되어 있다. 인터페이스 사용 사례 분석 단계는 인터페이스 구조 그리고 레거시 시스템과 사용자간의 상호작용 등의 정보를 획득하는 단계이다. 인터페이스 객체분할 단계는 인터페이스 정보를 의미 있는 필드들로 구분하는 단계이며, 객체구조 모델링 단계는 인터페이스 객체들 간의 구조적 관계와 협력 관계를 파악하여 모델링하는 단계이다. 마지막으로 객체 모델 통합 단계는 객체 단위의 단위 모델들을 통합하여 추상화된 정보를 포함한 상위 수준의 통합 모델을 유도하는 단계다. 객체추출 기법에 의해 생성된 객체 통합 모델은 역공학 기술자들의 레거시 시스템 이해와 레거시 시스템의 정보를 새로운 시스템에 적용하는데 있어 좀 더 용이한 효율성을 제공한다.
문헌에 존재하는 핵심개체 간의 관계를 자동으로 추출할 때 다양한 형태의 문서 분석 결과를 활용할 수 있다. 본 논문에서 는 기존에 개발되어 비교적 높은 성능을 보여준 합성곱 구문 트리 커널의 구절 구조 유사성 정보와 두 개체 사이의 유의미한 연관관계를 표현해주는 술어-논항 구조 패턴의 유사성 정보를 동시에 활용하는 혼합 커널을 제안한다. 구문적 구조를 이용하는 기존의 합성곱 구문 트리 커널에 술어와 논항 간의 의미적 구조를 활용하는 술어-논항 구조 패턴 유사도 커널을 결합하여 상호보완적인 혼합 커널을 구성하였고, 다양한 테스트컬렉션 기반의 실험을 통하여 개발된 커널의 성능을 측정하였다. 실험결과 구절 구조 정보를 이용하는 합성곱 구문 트리 커널만을 단독으로 사용했을 때보다 술어-논항 구조의 패턴 정보를 결합한 혼합 커널을 사용했을 때에 더 좋은 성능을 보이는 것을 확인할 수 있었다. 또한 기존의 시스템보다 우수한 성능을 보이는 것도 함께 확인할 수 있었다.
어휘 인식 시스템에서 인식률 저하의 요인으로는 유사한 음소 인식과 부정확한 어휘 제공으로 인해 오인식 오류가 존재한다. 부정확한 어휘의 입력으로 특징을 추출하여 인식할 경우 오인식의 결과가 나타나거나 유사한 음소로 인식되며 특징 추출이 제대로 이루어지지 않으면 음소 인식 시 유사한 음소로 인식하게 된다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 음소 유사율을 이용한 어휘 인식 후처리에서의 오류 보정 후처리 시스템을 제안하였다. 음소 유사율은 모노폰으로 훈련시킨 훈련 데이터를 각각의 음소에 MFCC와 LPC 특징 추출 방법을 이용하여 구하였다. 유사한 음소는 정확한 음소로 인식할 수 있도록 유도하여 부정확한 어휘 제공으로 인하여 오인식되는 오류를 최소화하였다. 음소 유사율과 신뢰도를 이용하여 오류 보정율을 구하였으며, 어휘 인식 과정에서 오류로 판명된 어휘에 대하여 오류 보정을 수행하였다. 에러패턴 학습을 이용한 시스템과 의미기반을 이용한 시스템에 비해 시스템 성능 평가 결과 MFCC와 LPC는 각각 7.5%와 5.3%의 인식 향상률을 보였다.
테이블 형태로 이루어진 이력서 양식이나 인터넷 회원 가입에서 개인의 신상 정보를 매번 입력하는 일은 매우 반복적이고 번거로운 일이다. 개인의 신상 정보를 컴퓨터에 저장하고 있다가 인터넷 회원 가입 페이지에 자동으로 채워 주는 몇 개의 시스템이 나와 있으나 필드와 필드 값이 잘못 매치되는 등 정확도가 떨어지는 면이 있다. 본 연구는 컴퓨터에 개인의 신상정보를 저장하고 있다가 개인 데이터 온톨로지를 이용하여 회원가입 페이지(목표 페이지)에서 요구하는 사용자의 정보를 추론하고 자동으로 채워주는 시스템을 제안하였다. 추론의 과정에서 먼저 목표 페이지를 분석하여 요구하는 필드명을 추출하고, 유사어 온톨로지를 이용하여 요구 필드명을 표준 필드명으로 변환한다. 표준 필드명으로 변환된 요구 필드는 온톨로지 매치 메이킹을 이용하여 개인 데이터 온톨로지 상의 적절한 레벨을 찾아서 최종적인 필드값을 생성한다. 본 시스템은 목표 페이지와 유사한 필드를 가져올 뿐만 아니라 온톨로지 계층 상에 해당되는 필드를 추론하여 정확한 필드값을 가져오게 된다. 몇 개의 회원 가입 페이지를 대상으로 실험한 결과 본 시스템이 기존의 시스템에 비해 정확도에서 우수함을 보였다. 본 시스템은 이력서 양식 등 반복적으로 동일한 정보를 채우는 경우에도 쉽게 적용 가능하다.
온라인 상품평 양의 비약적 증가로 인해 소비자들이 유용한 상품평 만을 찾는 것이 거의 불가능에 가까워졌다. 이 연구는 온라인 상품평의 유용성을 자동적으로 평가할 수 있는 토대를 마련하는데 그 목적이 있다. 이를 위해 상품평을 이루는 문장에 담긴 정보를 설명하는 그 대상에 따라 종류를 나눌 수 있도록 상품평 정보 분류를(Review Information Types) 제안하고, 각 정보 분류 내에서 문장의 주제 벡터 변환 방법과 군집화를 이용하여 더 세부적으로 각 문장이 어떤 정보를 제공하는지를 추출함으로써 각 상품평이 제공하는 정보에 따라 그 유용성을 평가하는 방법을 제안한다. 이러한 시도는 잠재적 소비자들이 상품평에서 상품 자체의 특성이나 상품평 제공자의 경험과 같은 정보를 배송과 같은 정보보다 중요하게 생각할 것이라는 가정에서 시작했다. 자동 상품평 유용성 평가 실험을 통해 본 연구에서 제시하는 방법이 기존의 비교 가능한 연구들에 비해 더 효과적인 것을 밝혀냈다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권10호
/
pp.3729-3749
/
2021
At present, deep convolution network-based salient object detection (SOD) has achieved impressive performance. However, it is still a challenging problem to make full use of the multi-scale information of the extracted features and which appropriate feature fusion method is adopted to process feature mapping. In this paper, we propose a new adjacency auxiliary network (AANet) based on multi-scale feature fusion for SOD. Firstly, we design the parallel connection feature enhancement module (PFEM) for each layer of feature extraction, which improves the feature density by connecting different dilated convolution branches in parallel, and add channel attention flow to fully extract the context information of features. Then the adjacent layer features with close degree of abstraction but different characteristic properties are fused through the adjacent auxiliary module (AAM) to eliminate the ambiguity and noise of the features. Besides, in order to refine the features effectively to get more accurate object boundaries, we design adjacency decoder (AAM_D) based on adjacency auxiliary module (AAM), which concatenates the features of adjacent layers, extracts their spatial attention, and then combines them with the output of AAM. The outputs of AAM_D features with semantic information and spatial detail obtained from each feature are used as salient prediction maps for multi-level feature joint supervising. Experiment results on six benchmark SOD datasets demonstrate that the proposed method outperforms similar previous methods.
Building Information Modeling(BIM)기술을 유지관리 단계에서 활용하기 위해서는 상당량의 유지관리 데이터와 BIM기반 정보모델 객체들이 연계되어 운용되어야 한다. 본 연구에서는 교량 점검데이터를 표현하기 위해 확장된 IFC기반의 BIM모델과 온톨로지를 연계하여 정보를 관리하는 방법을 제시하였다. 이를 위해 현재의 IFC버전은 교량 객체를 제대로 표현할 수 없기 때문에 교량을 위한 IFC엔티티를 확장하였으며, 확장된 IFC기반의 정보모델을 생성하는 방법을 제시하였다. 또한, 교량 점검데이터에 대한 기본 개념을 추출하고, 교량 점검데이터를 위한 온톨로지(Ontology)를 생성하였다. 추출된 기본 개념들은 제시된 온톨로지에서 시멘틱 웹의 트리플(Triple) 방식으로 관계를 형성되었다. 마지막으로, 생성된 IFC기반의 BIM모델은 제시된 온톨로지와의 통합을 위하여 시멘틱 데이터 형식으로 변환되었다. 확장된 IFC기반 BIM모델은 제시된 교량 점검데이터 관리를 위한 온톨로지와 통합되었고, 실제 교량 점검데이터를 기반으로 테스트모델을 생성하였다. SPARQL query를 통해 목적에 맞는 교량 점검데이터가 추출됨을 확인하여 실효성을 검증하였다.
온톨로지는 차세대 시맨틱 웹을 위한 논리의 기반을 구성하기 위해 제안되었다. 이러한 온톨로지는 특정 분야에 대한 지식을 정형화된 형태로 표현함으로써 기계에 의한 지식의 이해를 가능하게 하고, 이를 사용하여 사용자의 요구에 알맞은 지능화된 서비스를 제공할 수 있게 한다. 하지만, 온톨로지의 구축과 유지는 많은 사람의 시간과 노력을 요구한다. 본 고에서는 온톨로지 구축 방법의 일환으로, 문서로부터 온톨로지를 구성하는 개념간의 관계를 정의하는 자동화된 방법을 제안한다. 본 고에서 제안된 방법은 특정 분야의 문서에 존재하는 개념을 기반으로 개념간의 연관 규칙을 형성하는 개념 쌍을 찾고, 두 개념 사이에 존재하는 내용의 군집화를 통해 두 개념간의 관계를 설명하는 패턴을 찾는다. 마지막으로 패턴간의 군집화를 사용하여 개념 사이의 일반화된 관계를 명시한다. 본 고에서는 제안된 방법을 검증하기 위한 방법으로 TREC(Text REtrieval Conference)에서 제공하는 문서집합을 사용하여 개념간의 관계를 추출, 평가하였으며, 그 결과 제안된 방법은 개념간의 관계를 설명하는 유용한 정보를 제공할 수 있음을 보여준다.
기존 논문[1]에서는 Fillmore의 Case Grammar를 기반으로 객체 추출 및 모델링 방법을 제안하였다. 이 방법은 유스케이스 추출 및 결정 방법을 고려하지 않았다. 이러한 문제를 해결하기 위해, 본 논문에서는 요구공학에서 자연어 처리를 위해 Fillmore의 의미적 방법을 채택하였다. 즉, 고객 요구사항으로부터 유스케이스를 모델링하고 추출하기 위해 Fillmore의 Case Grammar를 개선한다. 개선된 메커니즘은 구조화된 절차를 정의하고 시각적 표기법을 수행한다. 또한 유스케이스의 복잡성과 관련된 Goal 지향 요구공학(GoRE)을 기반으로 추출된 유스케이스에서 유스케이스 크기를 식별하는 유스케이스 결정 매트릭스(Use Case Decision Matrix)를 제안한다. 이 매트릭스에서 유스케이스를 우선순위화 한다. 사례연구로 은행 ATM 시스템에 적용하였다.
본 논문에서는 합성곱 구문 트리 커널(convolution parse tree kernel)과, 한 문장에서 나타나는 두 개체 간의 관계를 가장 잘 설명하는 동사 상당어구에 대한 개념화를 통해 생성되는 워드넷 신셋 벡터(WordNet synsets vector) 커널을 활용하여 과학기술분야 전문용어 간의 관계 추출을 시도하였다. 본 논문에서 적용한 모델의 성능 평가를 위해서 세 가지 검증 컬렉션을 활용하였으며, 각각의 컬렉션 마다 기존의 접근 방법론 보다 우수한 성능을 보여주었다. 특히 KREC 2008 컬렉션을 대상으로 한 성능 실험에서는, 기존의 합성곱 구문 트리 커널과 동사 신셋 벡터(verb synsets vector)를 함께 적용한 합성 커널이 비교적 높은 성능 향상(8% F1)을 나타내고 있다. 이는 성능을 높이기 위해서 관계 추출에서 많이 활용하였던 개체 자질 정보와 더불어 개체 주변에 존재하는 주변 문맥 정보(동사 및 동사 상당어구)도 매우 유용한 정보임을 입증하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.