• 제목/요약/키워드: Semantic-Based Information Extraction

검색결과 137건 처리시간 0.022초

객체 재사용성 향상을 위한 레거시 시스템 인터페이스 기반 객체추출 기법 (An Object Extraction Technique for Object Reusability Improvement based on Legacy System Interface)

  • 이창목;유철중;장옥배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권11호
    • /
    • pp.1455-1473
    • /
    • 2004
  • 본 연구는 객체 재사용과 재공학을 위해 레거시 시스템의 인터페이스 정보로부터 의미 있는 정보를 추출하고 새로운 시스템에 통합될 수 있도록 하기 위한 기존 레거시 시스템의 인터페이스에 기반 한 객체추출 기법을 제안한다. 본 논문에서 제안하는 객체추출 기법은 인터페이스 사용 사례 분석 단계, 인터페이스 객체 분할 단계, 객체구조 모델링 단계, 객체 모델 통합 단계 등 4단계로 구성되어 있다. 인터페이스 사용 사례 분석 단계는 인터페이스 구조 그리고 레거시 시스템과 사용자간의 상호작용 등의 정보를 획득하는 단계이다. 인터페이스 객체분할 단계는 인터페이스 정보를 의미 있는 필드들로 구분하는 단계이며, 객체구조 모델링 단계는 인터페이스 객체들 간의 구조적 관계와 협력 관계를 파악하여 모델링하는 단계이다. 마지막으로 객체 모델 통합 단계는 객체 단위의 단위 모델들을 통합하여 추상화된 정보를 포함한 상위 수준의 통합 모델을 유도하는 단계다. 객체추출 기법에 의해 생성된 객체 통합 모델은 역공학 기술자들의 레거시 시스템 이해와 레거시 시스템의 정보를 새로운 시스템에 적용하는데 있어 좀 더 용이한 효율성을 제공한다.

술어-논항 구조의 패턴 유사도를 결합한 혼합 커널 기반관계 추출 (Relation Extraction based on Composite Kernel combining Pattern Similarity of Predicate-Argument Structure)

  • 정창후;최성필;최윤수;송사광;전홍우
    • 인터넷정보학회논문지
    • /
    • 제12권5호
    • /
    • pp.73-85
    • /
    • 2011
  • 문헌에 존재하는 핵심개체 간의 관계를 자동으로 추출할 때 다양한 형태의 문서 분석 결과를 활용할 수 있다. 본 논문에서 는 기존에 개발되어 비교적 높은 성능을 보여준 합성곱 구문 트리 커널의 구절 구조 유사성 정보와 두 개체 사이의 유의미한 연관관계를 표현해주는 술어-논항 구조 패턴의 유사성 정보를 동시에 활용하는 혼합 커널을 제안한다. 구문적 구조를 이용하는 기존의 합성곱 구문 트리 커널에 술어와 논항 간의 의미적 구조를 활용하는 술어-논항 구조 패턴 유사도 커널을 결합하여 상호보완적인 혼합 커널을 구성하였고, 다양한 테스트컬렉션 기반의 실험을 통하여 개발된 커널의 성능을 측정하였다. 실험결과 구절 구조 정보를 이용하는 합성곱 구문 트리 커널만을 단독으로 사용했을 때보다 술어-논항 구조의 패턴 정보를 결합한 혼합 커널을 사용했을 때에 더 좋은 성능을 보이는 것을 확인할 수 있었다. 또한 기존의 시스템보다 우수한 성능을 보이는 것도 함께 확인할 수 있었다.

음소 유사율 오류 보정을 이용한 어휘 인식 후처리 시스템 (Vocabulary Recognition Post-Processing System using Phoneme Similarity Error Correction)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권7호
    • /
    • pp.83-90
    • /
    • 2010
  • 어휘 인식 시스템에서 인식률 저하의 요인으로는 유사한 음소 인식과 부정확한 어휘 제공으로 인해 오인식 오류가 존재한다. 부정확한 어휘의 입력으로 특징을 추출하여 인식할 경우 오인식의 결과가 나타나거나 유사한 음소로 인식되며 특징 추출이 제대로 이루어지지 않으면 음소 인식 시 유사한 음소로 인식하게 된다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 음소 유사율을 이용한 어휘 인식 후처리에서의 오류 보정 후처리 시스템을 제안하였다. 음소 유사율은 모노폰으로 훈련시킨 훈련 데이터를 각각의 음소에 MFCC와 LPC 특징 추출 방법을 이용하여 구하였다. 유사한 음소는 정확한 음소로 인식할 수 있도록 유도하여 부정확한 어휘 제공으로 인하여 오인식되는 오류를 최소화하였다. 음소 유사율과 신뢰도를 이용하여 오류 보정율을 구하였으며, 어휘 인식 과정에서 오류로 판명된 어휘에 대하여 오류 보정을 수행하였다. 에러패턴 학습을 이용한 시스템과 의미기반을 이용한 시스템에 비해 시스템 성능 평가 결과 MFCC와 LPC는 각각 7.5%와 5.3%의 인식 향상률을 보였다.

온톨로지를 이용한 의미 기반 정보 채움 시스템 (A Semantic-Based Information Filling System Using Ontology)

  • 민영근;김인수;이복주
    • 정보처리학회논문지B
    • /
    • 제14B권4호
    • /
    • pp.295-302
    • /
    • 2007
  • 테이블 형태로 이루어진 이력서 양식이나 인터넷 회원 가입에서 개인의 신상 정보를 매번 입력하는 일은 매우 반복적이고 번거로운 일이다. 개인의 신상 정보를 컴퓨터에 저장하고 있다가 인터넷 회원 가입 페이지에 자동으로 채워 주는 몇 개의 시스템이 나와 있으나 필드와 필드 값이 잘못 매치되는 등 정확도가 떨어지는 면이 있다. 본 연구는 컴퓨터에 개인의 신상정보를 저장하고 있다가 개인 데이터 온톨로지를 이용하여 회원가입 페이지(목표 페이지)에서 요구하는 사용자의 정보를 추론하고 자동으로 채워주는 시스템을 제안하였다. 추론의 과정에서 먼저 목표 페이지를 분석하여 요구하는 필드명을 추출하고, 유사어 온톨로지를 이용하여 요구 필드명을 표준 필드명으로 변환한다. 표준 필드명으로 변환된 요구 필드는 온톨로지 매치 메이킹을 이용하여 개인 데이터 온톨로지 상의 적절한 레벨을 찾아서 최종적인 필드값을 생성한다. 본 시스템은 목표 페이지와 유사한 필드를 가져올 뿐만 아니라 온톨로지 계층 상에 해당되는 필드를 추론하여 정확한 필드값을 가져오게 된다. 몇 개의 회원 가입 페이지를 대상으로 실험한 결과 본 시스템이 기존의 시스템에 비해 정확도에서 우수함을 보였다. 본 시스템은 이력서 양식 등 반복적으로 동일한 정보를 채우는 경우에도 쉽게 적용 가능하다.

상품평의 정보 분류에 기반한 자동 상품평 유용성 평가 (Automatic Product Review Helpfulness Estimation based on Review Information Types)

  • 김문형;신효필
    • 정보과학회 논문지
    • /
    • 제43권9호
    • /
    • pp.983-997
    • /
    • 2016
  • 온라인 상품평 양의 비약적 증가로 인해 소비자들이 유용한 상품평 만을 찾는 것이 거의 불가능에 가까워졌다. 이 연구는 온라인 상품평의 유용성을 자동적으로 평가할 수 있는 토대를 마련하는데 그 목적이 있다. 이를 위해 상품평을 이루는 문장에 담긴 정보를 설명하는 그 대상에 따라 종류를 나눌 수 있도록 상품평 정보 분류를(Review Information Types) 제안하고, 각 정보 분류 내에서 문장의 주제 벡터 변환 방법과 군집화를 이용하여 더 세부적으로 각 문장이 어떤 정보를 제공하는지를 추출함으로써 각 상품평이 제공하는 정보에 따라 그 유용성을 평가하는 방법을 제안한다. 이러한 시도는 잠재적 소비자들이 상품평에서 상품 자체의 특성이나 상품평 제공자의 경험과 같은 정보를 배송과 같은 정보보다 중요하게 생각할 것이라는 가정에서 시작했다. 자동 상품평 유용성 평가 실험을 통해 본 연구에서 제시하는 방법이 기존의 비교 가능한 연구들에 비해 더 효과적인 것을 밝혀냈다.

AANet: Adjacency auxiliary network for salient object detection

  • Li, Xialu;Cui, Ziguan;Gan, Zongliang;Tang, Guijin;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3729-3749
    • /
    • 2021
  • At present, deep convolution network-based salient object detection (SOD) has achieved impressive performance. However, it is still a challenging problem to make full use of the multi-scale information of the extracted features and which appropriate feature fusion method is adopted to process feature mapping. In this paper, we propose a new adjacency auxiliary network (AANet) based on multi-scale feature fusion for SOD. Firstly, we design the parallel connection feature enhancement module (PFEM) for each layer of feature extraction, which improves the feature density by connecting different dilated convolution branches in parallel, and add channel attention flow to fully extract the context information of features. Then the adjacent layer features with close degree of abstraction but different characteristic properties are fused through the adjacent auxiliary module (AAM) to eliminate the ambiguity and noise of the features. Besides, in order to refine the features effectively to get more accurate object boundaries, we design adjacency decoder (AAM_D) based on adjacency auxiliary module (AAM), which concatenates the features of adjacent layers, extracts their spatial attention, and then combines them with the output of AAM. The outputs of AAM_D features with semantic information and spatial detail obtained from each feature are used as salient prediction maps for multi-level feature joint supervising. Experiment results on six benchmark SOD datasets demonstrate that the proposed method outperforms similar previous methods.

확장 IFC-BIM 기반 정보모델과 온톨로지를 활용한 교량 점검데이터 관리방법 (Integration of Extended IFC-BIM and Ontology for Information Management of Bridge Inspection)

  • 에르데네 호빌라이;권태호;이상호
    • 한국전산구조공학회논문집
    • /
    • 제33권6호
    • /
    • pp.411-417
    • /
    • 2020
  • Building Information Modeling(BIM)기술을 유지관리 단계에서 활용하기 위해서는 상당량의 유지관리 데이터와 BIM기반 정보모델 객체들이 연계되어 운용되어야 한다. 본 연구에서는 교량 점검데이터를 표현하기 위해 확장된 IFC기반의 BIM모델과 온톨로지를 연계하여 정보를 관리하는 방법을 제시하였다. 이를 위해 현재의 IFC버전은 교량 객체를 제대로 표현할 수 없기 때문에 교량을 위한 IFC엔티티를 확장하였으며, 확장된 IFC기반의 정보모델을 생성하는 방법을 제시하였다. 또한, 교량 점검데이터에 대한 기본 개념을 추출하고, 교량 점검데이터를 위한 온톨로지(Ontology)를 생성하였다. 추출된 기본 개념들은 제시된 온톨로지에서 시멘틱 웹의 트리플(Triple) 방식으로 관계를 형성되었다. 마지막으로, 생성된 IFC기반의 BIM모델은 제시된 온톨로지와의 통합을 위하여 시멘틱 데이터 형식으로 변환되었다. 확장된 IFC기반 BIM모델은 제시된 교량 점검데이터 관리를 위한 온톨로지와 통합되었고, 실제 교량 점검데이터를 기반으로 테스트모델을 생성하였다. SPARQL query를 통해 목적에 맞는 교량 점검데이터가 추출됨을 확인하여 실효성을 검증하였다.

개념간 관계의 추출과 명명을 위한 통계적 접근방법 (A Statistical Approach for Extracting and Miming Relation between Concepts)

  • 김희수;최익규;김민구
    • 정보처리학회논문지B
    • /
    • 제12B권4호
    • /
    • pp.479-486
    • /
    • 2005
  • 온톨로지는 차세대 시맨틱 웹을 위한 논리의 기반을 구성하기 위해 제안되었다. 이러한 온톨로지는 특정 분야에 대한 지식을 정형화된 형태로 표현함으로써 기계에 의한 지식의 이해를 가능하게 하고, 이를 사용하여 사용자의 요구에 알맞은 지능화된 서비스를 제공할 수 있게 한다. 하지만, 온톨로지의 구축과 유지는 많은 사람의 시간과 노력을 요구한다. 본 고에서는 온톨로지 구축 방법의 일환으로, 문서로부터 온톨로지를 구성하는 개념간의 관계를 정의하는 자동화된 방법을 제안한다. 본 고에서 제안된 방법은 특정 분야의 문서에 존재하는 개념을 기반으로 개념간의 연관 규칙을 형성하는 개념 쌍을 찾고, 두 개념 사이에 존재하는 내용의 군집화를 통해 두 개념간의 관계를 설명하는 패턴을 찾는다. 마지막으로 패턴간의 군집화를 사용하여 개념 사이의 일반화된 관계를 명시한다. 본 고에서는 제안된 방법을 검증하기 위한 방법으로 TREC(Text REtrieval Conference)에서 제공하는 문서집합을 사용하여 개념간의 관계를 추출, 평가하였으며, 그 결과 제안된 방법은 개념간의 관계를 설명하는 유용한 정보를 제공할 수 있음을 보여준다.

Goal 지향 요구공학 기반의 유스케이스 식별 방법 (Use Case Identification Method based on Goal oriented Requirements Engineering(GoRE))

  • 박보경;김영철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권7호
    • /
    • pp.255-262
    • /
    • 2014
  • 기존 논문[1]에서는 Fillmore의 Case Grammar를 기반으로 객체 추출 및 모델링 방법을 제안하였다. 이 방법은 유스케이스 추출 및 결정 방법을 고려하지 않았다. 이러한 문제를 해결하기 위해, 본 논문에서는 요구공학에서 자연어 처리를 위해 Fillmore의 의미적 방법을 채택하였다. 즉, 고객 요구사항으로부터 유스케이스를 모델링하고 추출하기 위해 Fillmore의 Case Grammar를 개선한다. 개선된 메커니즘은 구조화된 절차를 정의하고 시각적 표기법을 수행한다. 또한 유스케이스의 복잡성과 관련된 Goal 지향 요구공학(GoRE)을 기반으로 추출된 유스케이스에서 유스케이스 크기를 식별하는 유스케이스 결정 매트릭스(Use Case Decision Matrix)를 제안한다. 이 매트릭스에서 유스케이스를 우선순위화 한다. 사례연구로 은행 ATM 시스템에 적용하였다.

혼합 커널을 활용한 과학기술분야 용어간 관계 추출 (Extraction of Relationships between Scientific Terms based on Composite Kernels)

  • 최성필;최윤수;정창후;맹성현
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권12호
    • /
    • pp.988-992
    • /
    • 2009
  • 본 논문에서는 합성곱 구문 트리 커널(convolution parse tree kernel)과, 한 문장에서 나타나는 두 개체 간의 관계를 가장 잘 설명하는 동사 상당어구에 대한 개념화를 통해 생성되는 워드넷 신셋 벡터(WordNet synsets vector) 커널을 활용하여 과학기술분야 전문용어 간의 관계 추출을 시도하였다. 본 논문에서 적용한 모델의 성능 평가를 위해서 세 가지 검증 컬렉션을 활용하였으며, 각각의 컬렉션 마다 기존의 접근 방법론 보다 우수한 성능을 보여주었다. 특히 KREC 2008 컬렉션을 대상으로 한 성능 실험에서는, 기존의 합성곱 구문 트리 커널과 동사 신셋 벡터(verb synsets vector)를 함께 적용한 합성 커널이 비교적 높은 성능 향상(8% F1)을 나타내고 있다. 이는 성능을 높이기 위해서 관계 추출에서 많이 활용하였던 개체 자질 정보와 더불어 개체 주변에 존재하는 주변 문맥 정보(동사 및 동사 상당어구)도 매우 유용한 정보임을 입증하고 있다.