• 제목/요약/키워드: Semantic-Based Image Retrieval

검색결과 59건 처리시간 0.025초

An Effective Framework for Contented-Based Image Retrieval with Multi-Instance Learning Techniques

  • Peng, Yu;Wei, Kun-Juan;Zhang, Da-Li
    • Journal of Ubiquitous Convergence Technology
    • /
    • 제1권1호
    • /
    • pp.18-22
    • /
    • 2007
  • Multi-Instance Learning(MIL) performs well to deal with inherently ambiguity of images in multimedia retrieval. In this paper, an effective framework for Contented-Based Image Retrieval(CBIR) with MIL techniques is proposed, the effective mechanism is based on the image segmentation employing improved Mean Shift algorithm, and processes the segmentation results utilizing mathematical morphology, where the goal is to detect the semantic concepts contained in the query. Every sub-image detected is represented as a multiple features vector which is regarded as an instance. Each image is produced to a bag comprised of a flexible number of instances. And we apply a few number of MIL algorithms in this framework to perform the retrieval. Extensive experimental results illustrate the excellent performance in comparison with the existing methods of CBIR with MIL.

  • PDF

컬러 분포와 WordNet상의 유사도 측정을 이용한 의미적 이미지 검색 (Semantic Image Retrieval Using Color Distribution and Similarity Measurement in WordNet)

  • 최준호;조미영;김판구
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.509-516
    • /
    • 2004
  • 의미기반 이미지 검색에서의 의미적 내용 인식은 주석 위주의 텍스트 정보를 이용하는 것이 일반적이다. 이러한 텍스트 정보 기반 이미지 검색은 전통적인 검색 방법인 키워드 검색 기술을 그대로 사하여 쉽게 구현할 수 있으나, 텍스트의 개념적 매칭이 아닌 스트링 매칭이므로 주석 처리된 단어와 정확한 매칭이 없다면 검색할 수 없는 단점이 있었다. 이에 본 논문에서는 Ontology의 일종인 WordNet을 이용하여 깊이, 정보량, 링크 타입, 밀도 등을 고려한 단어간 의미 유사도를 측정하여 패턴 매칭의 문제점을 해결하고자 한다. 또한, 이미지의 컬러 분포 유사도를 측정하여 저차원 특징과 결합한 의미적 이미지 검색이 가능하도록 설계하였다. 제안된 검색 방안에 대해 'Microsoft Design Gallery Live'의 주석을 포함한 이미지를 대상으로 실험한 결과, 기존 의미기반 검색 시스템보다 향상된 결과를 확인하였다.

Learning Similarity with Probabilistic Latent Semantic Analysis for Image Retrieval

  • Li, Xiong;Lv, Qi;Huang, Wenting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권4호
    • /
    • pp.1424-1440
    • /
    • 2015
  • It is a challenging problem to search the intended images from a large number of candidates. Content based image retrieval (CBIR) is the most promising way to tackle this problem, where the most important topic is to measure the similarity of images so as to cover the variance of shape, color, pose, illumination etc. While previous works made significant progresses, their adaption ability to dataset is not fully explored. In this paper, we propose a similarity learning method on the basis of probabilistic generative model, i.e., probabilistic latent semantic analysis (PLSA). It first derives Fisher kernel, a function over the parameters and variables, based on PLSA. Then, the parameters are determined through simultaneously maximizing the log likelihood function of PLSA and the retrieval performance over the training dataset. The main advantages of this work are twofold: (1) deriving similarity measure based on PLSA which fully exploits the data distribution and Bayes inference; (2) learning model parameters by maximizing the fitting of model to data and the retrieval performance simultaneously. The proposed method (PLSA-FK) is empirically evaluated over three datasets, and the results exhibit promising performance.

주석 및 특징을 이용한 의미기반 비디오 검색 시스템 (A Semantics-based Video Retrieval System using Annotation and Feature)

  • 이종희
    • 전자공학회논문지CI
    • /
    • 제41권4호
    • /
    • pp.95-102
    • /
    • 2004
  • 비디오 데이터를 효율적으로 처리하기 위해서는 비디오 데이터가 가지고 있는 내용에 대한 정보를 데이터베이스에 저장하고 사용자들의 다양한 질의를 처리할 수 있는 의미기반 검색 기법이 요구된다. 기존의 내용기반 비디오 검색 시스템들은 주석기반 검색 또는 특징기반 검색과 같은 단일 방식으로만 검색을 하므로 검색 효율이 낮을 뿐 아니라 완전한 자동 처리가 되지 않아 시스템 관리자나 주석자의 많은 노력을 요구한다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색시스템을 제안한다. 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 제안하는 특징기반 검색 기법과 최적 비교 영역 추출을 통해 가장 유사한 키 프레임을 검색한다. 따라서 의미기반 검색을 통해 비디오 데이터의 검색의 효율을 높일 수 있도록 시스템을 제안한다.

텍스트 기반 의료영상 검색의 최근 발전 (Recent Development in Text-based Medical Image Retrieval)

  • 황경훈;이해준;고건;김석균;선용한;최덕주
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권3호
    • /
    • pp.55-60
    • /
    • 2015
  • An effective image retrieval system is required as the amount of medical imaging data is increasing recently. Authors reviewed the recent development of text-based medical image retrieval including the use of controlled vocabularies - RadLex (Radiology Lexicon), FMA (Foundational Model of Anatomy), etc - natural language processing, semantic ontology, and image annotation and markup.

자동 주석 및 히스토그램 기법을 이용한 환경 교육 컨텐츠 검색 시스템 (A Retrieval System of Environment Education Contents using Method of Automatic Annotation and Histogram)

  • 이근왕;김진형
    • 한국산학기술학회논문지
    • /
    • 제9권1호
    • /
    • pp.114-121
    • /
    • 2008
  • 비디오 데이터를 효율적으로 처리하기 위해서는 비디오 데이터가 가지고 있는 내용에 대한 정보를 데이터베이스에 저장하고 사용자들의 다양한 질의를 처리할 수 있는 의미기반 검색 기법이 요구된다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 환경 교육 컨텐츠 검색을 위한 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 제안하는 특징기반 검색기법을 통해 가장 유사한 키 프레임을 검색한다. 설계하고 구현한 시스템은 실험을 통한 성능평가에서 90% 이상의 높은 정확도를 보였다.

A Comparative Study of Local Features in Face-based Video Retrieval

  • Zhou, Juan;Huang, Lan
    • Journal of Computing Science and Engineering
    • /
    • 제11권1호
    • /
    • pp.24-31
    • /
    • 2017
  • Face-based video retrieval has become an active and important branch of intelligent video analysis. Face profiling and matching is a fundamental step and is crucial to the effectiveness of video retrieval. Although many algorithms have been developed for processing static face images, their effectiveness in face-based video retrieval is still unknown, simply because videos have different resolutions, faces vary in scale, and different lighting conditions and angles are used. In this paper, we combined content-based and semantic-based image analysis techniques, and systematically evaluated four mainstream local features to represent face images in the video retrieval task: Harris operators, SIFT and SURF descriptors, and eigenfaces. Results of ten independent runs of 10-fold cross-validation on datasets consisting of TED (Technology Entertainment Design) talk videos showed the effectiveness of our approach, where the SIFT descriptors achieved an average F-score of 0.725 in video retrieval and thus were the most effective, while the SURF descriptors were computed in 0.3 seconds per image on average and were the most efficient in most cases.

내용기반 영상검색 시스템의 분석 및 발전 방안 (Anatomy of Current Issues on Content-Based Image Retrieval)

  • ;;박동원;안성옥
    • 컴퓨터교육학회논문지
    • /
    • 제6권4호
    • /
    • pp.31-36
    • /
    • 2003
  • 내용기반 영상검색 분야에서의 활발한 연구로 지난 수년간 기술과 성능 면에서 괄목할 성장을 이룩해 내었다. 본 논문에서는 기존의 영상검색 시스템을 체계적으로 분석하여 아직까지 남아있는 취약점 및 개선 부분에 대하여 기술하였다. 특히, 의미론적 영상검색에 대하여 주안점을 두어 시스템 향상을 위하여 심도있게 연구가 진행 되어야 할 분야의 방향 및 주제를 분류하고 분석하여 제안하였다.

  • PDF

시맨틱 웹 기반의 이미지 정색을 이용한 비교 쇼핑 시스템 (Comparison Shopping Systems using Image Retrieval based on Semantic Web)

  • 이기성;유영훈;조근식;김흥남
    • 지능정보연구
    • /
    • 제11권2호
    • /
    • pp.1-15
    • /
    • 2005
  • 쇼핑몰들의 상품 정보를 효과적으로 비교할 수 있는 비교 쇼핑(comparison shopping) 시스템에서 사용자가 찾고자하는 상품에 대한 정확한 지식이 없이 검색할 경우, 불필요한 검색 결과로 인해 시스템의 효용성을 떨어지고, 사용자는 많은 시간을 소비하게 된다. 이러한 문제를 해결하기 위해서 시맨틱 웹 기반의 이미지 검색을 이용한 비교 쇼핑 시스템(Comparison Shopping Systems using Image Retrieval based on Semantic Web)을 제안한다. 제안된 시스템에서는 각 쇼핑몰들의 상품 이미지들을 온톨로지(Ontology) 기반으로 주석(annotation)처리한 후, 주석처리 된 이미지들을 통해 쇼핑몰을 구축하게 된다. 사용자는 이렇게 생성된 쇼핑몰에서 복잡한 키워드 검색을 이미지 검색으로 대체하여, 자신의 요구사항을 반영하고, 보다 정확한 검색을 할 수 있게 된다. 제안된 시스템의 성능평가를 위해 기존의 키워드 검색 기반 시스템과 단순 시맨틱 웹 기반의 비교 쇼핑 시스템의 성능을 비교 평가하였다. 그 결과, 시맨틱 웹 기반의 이미지 검색을 이용한 비교쇼핑 시스템이 키워드 검색기반과 시맨틱 웹 기반의 비교 쇼핑 시스템보다 평균적으로 50%, 20% 향상된 성능을 보였다.

  • PDF

객체 움직임의 의미적 단위 생성을 통한 비디오 이벤트 검출 (Video Event Detection according to Generating of Semantic Unit based on Moving Object)

  • 신주현;백선경;김판구
    • 한국멀티미디어학회논문지
    • /
    • 제11권2호
    • /
    • pp.143-152
    • /
    • 2008
  • 비디오 데이터에 대한 의미적 검출을 위해 이벤트 표현에 대한 많은 방법론이 연구되고 있지만, 아직도 저차원 특징을 이용한 내용기반 검출과 각 데이터에 주석을 정의한 주석기반 검출 방법이 대부분이다. 본 논문은 기존의 방법보다 의미적인 검색을 위해 객체 움직임 단위 생성과 이를 통한 이벤트 검출 기법을 제안한다. 첫째, 이벤트 단위로 움직임을 분류한다. 둘째, 분류된 객체 움직임에 대한 의미적 단위를 정의하고 이를 이벤트 검출에 이용하기 위해 저차원 특징과 매핑 가능한 규칙을 생성한다. 이를 통해 비디오 샷 단위의 의미적 이벤트 검출을 가능하게 한다. 제안된 내용의 유용성 평가를 위해 우리는 비디오 영상 이벤트 검출을 실험한 결과 약 80%의 정확률을 얻었다.

  • PDF