• Title/Summary/Keyword: Semantic word network

Search Result 115, Processing Time 0.029 seconds

A Big Data Analysis of Public Interest in Defense Reform 2.0 and Suggestions for Policy Completion

  • Kim, Tae Kyoung;Kang, Wonseok
    • Journal of East Asia Management
    • /
    • v.4 no.1
    • /
    • pp.1-22
    • /
    • 2023
  • This study conducted a big data analysis study through text mining and semantic network analysis to explore the perception of defense reform 2.0. The collected data were analyzed with the top 70 keywords as the appropriate range for network visualization. Through word frequency analysis, connection centrality analysis, and an N-gram analysis, we identified issues that received much attention such as troop reduction, shortening of military service period, dismantling of the border area unit, and returning wartime operational control. In particular, the results of clustering words through CONCOR analysis showed that there was a great interest in pursuing the technical group, concerns about military capacity reduction, and reorganization of manpower structure. The results of the analysis through text mining techniques are as follows. First, it was found that there was a lack of awareness about measures to reinforce the reduced troops while receiving much attention to the reduction of troops in Defense Reform 2.0. Second, it was found that it is necessary to actively communicate with the local community due to the deconstruction and movement of the border area units, such as the decrease of the population of the region and the collapse of the local commercial area. Third, it was judged that it is necessary to show substantial results through the promotion of barracks culture and the defense industry, which showed that there was less interest than military structure and defense operation from the people and the introduction of active policies. Through this study, we analyzed the public's interest in defense reform 2.0, which is a representative defense policy, and suggested a plan to draw support for national policy.

Analysis on the Trends of Studies Related to the National Competency Standard in Korea throughout the Semantic Network Analysis (언어네트워크 분석을 적용한 국가직무능력표준(NCS) 연구 동향 분석)

  • Lim, Yun-Jin;Son, Da-Mi
    • 대한공업교육학회지
    • /
    • v.41 no.2
    • /
    • pp.48-68
    • /
    • 2016
  • This study was conducted to identify the NCS-related research trends, Keywords, the Keywords Networks and the extension of the Keywords using the sementic network analysis and to seek for the development plans about NCS. For this, the study searched 345 the papers, with the National Competency Standards or NCS as a key word, among master's theses, dissertations and scholarly journals that RISS provides, and selected a total of 345 papers. Annual frequency analysis of the selected papers was carried out, and Semantic Network Analysis was carried out for 68 key words which can be seen as key terms of the terms shown by the subject. The method of analysis were KrKwic software, UCINET6.0 and NetDraw. The study results were as follows: First, NCS-related research increased gradually after starting in 2002, and has been accomplishing a significant growth since 2014. Second, as a result of analysis of keyword network, 'NCS, development, curriculum, analysis, application, job, university, education,' etc. appeared as priority key words. Third, as a result of sub-cluster analysis of NCS-related research, it was classified into four clusters, which could be seen as a research related to a specific strategy for realization of NCS's purpose, an exploratory research on improvement in core competency and exploration of college students' possibility related to employment using NCS, an operational research for junior college-centered curriculum and reorganization of the specialized subject, and an analysis of demand and perception of a high school-level vocational education curriculum. Fourth, the connection forming process among key words of domestic study results about NCS was expanding in the form of 'job${\rightarrow}$job ability${\rightarrow}$NCS${\rightarrow}$education${\rightarrow}$process, curriculum${\rightarrow}$development, university${\rightarrow}$analysis, utilization${\rightarrow}$qualification, application, improvement${\rightarrow}$plan, operation, industry${\rightarrow}$design${\rightarrow}$evaluation.'

Keyword Network Visualization for Text Summarization and Comparative Analysis (문서 요약 및 비교분석을 위한 주제어 네트워크 가시화)

  • Kim, Kyeong-rim;Lee, Da-yeong;Cho, Hwan-Gue
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.139-147
    • /
    • 2017
  • Most of the information prevailing in the Internet space consists of textual information. So one of the main topics regarding the huge document analyses that are required in the "big data" era is the development of an automated understanding system for textual data; accordingly, the automation of the keyword extraction for text summarization and abstraction is a typical research problem. But the simple listing of a few keywords is insufficient to reveal the complex semantic structures of the general texts. In this paper, a text-visualization method that constructs a graph by computing the related degrees from the selected keywords of the target text is developed; therefore, two construction models that provide the edge relation are proposed for the computing of the relation degree among keywords, as follows: influence-interval model and word- distance model. The finally visualized graph from the keyword-derived edge relation is more flexible and useful for the display of the meaning structure of the target text; furthermore, this abstract graph enables a fast and easy understanding of the target text. The authors' experiment showed that the proposed abstract-graph model is superior to the keyword list for the attainment of a semantic and comparitive understanding of text.

An Analysis of News Report Characteristics on Archives & Records Management for the Press in Korea: Based on 1999~2018 News Big Data (뉴스 빅데이터를 이용한 우리나라 언론의 기록관리 분야 보도 특성 분석: 1999~2018 뉴스를 중심으로)

  • Han, Seunghee
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.3
    • /
    • pp.41-75
    • /
    • 2018
  • The purpose of this study is to analyze the characteristics of Korean media on the topic of archives & records management based on time-series analysis. In this study, from January, 1999 to June, 2018, 4,680 news articles on archives & records management topics were extracted from BigKinds. In order to examine the characteristics of the media coverage on the archives & records management topic, this study was analyzed to the difference of the press coverage by period, subject, and type of the media. In addition, this study was conducted word-frequency based content analysis and semantic network analysis to investigate the content characteristics of media on the subject. Based on these results, this study was analyzed to the differences of media coverage by period, subject, and type of media. As a result, the news in the field of records management showed that there was a difference in the amount of news coverage and news contents by period, subject, and type of media. The amount of news coverage began to increase after the Presidential Records Management Act was enacted in 2007, and the largest amount of news was reported in 2013. Daily newspapers and financial newspapers reported the largest amount of news. As a result of analyzing news reports, during the first 10 years after 1999, news topics were formed around the issues arising from the application and diffusion process of the concept of archives & records management. However, since the enactment of the Presidential Records Management Act, archives & records management has become a major factor in political and social issues, and a large amount of political and social news has been reported.

Intellectual Structure Analysis on the Field of Open Data Using Co-word Analysis (동시출현단어 분석을 이용한 오픈 데이터 분야의 지적 구조 분석)

  • HyeKyung Lee;Yong-Gu Lee
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.4
    • /
    • pp.429-450
    • /
    • 2023
  • The purpose of this study is to examine recent trends and intellectual structures in research related to open data. To achieve this, the study conducted a search for the keyword "open data" in Scopus and collected a total of 6,543 papers from 1999 to 2023. After data preprocessing, the study focused on the author keywords of 5,589 papers to perform network analysis and derive centrality in the field of open data research and linked open data research. As a result, the study found that "big data" exhibited the highest centrality in research related to open data. The research in this area mainly focuses on the utilization of open data as a concept of public data, studies on the application of open data in analysis related to big data as an associated concept, and research on topics related to the use of open data, such as the reproduction, utilization, and access of open data. In linked open data research, both triadic centrality and closeness centrality showed that "the semantic web" had the highest centrality. Moreover, it was observed that research emphasizing data linkage and relationship formation, rather than public data policies, was more prevalent in this field.

Text Mining Analysis of Media Coverage of Maritime Sports: Perceptions of Yachting, Rowing, and Canoeing (텍스트마이닝을 활용한 해양스포츠에 대한 언론 보도기사 분석: 요트, 조정, 카누를 중심으로)

  • Ji-Hyeon Kim;Bo-Kyeong Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.609-619
    • /
    • 2023
  • This study aimed to investigate the formation of the social perception of domestic maritime sports using text mining analysis of keywords and topics from domestic media coverage over the past 10 years related to representative maritime sports, including yachting, rowing, and canoeing. The results are as follows: First, term frequency (TF) and word cloud analyses identified the top keywords: "maritime," "competition," "experience," "tourism," "world," "yachting," "canoeing," "leisure," and "participation." Second, semantic network analysis revealed that yachting was correlated with terms like "maritime," "industry," "competition," "leisure," "tourism," "boat," "facilities," and "business"; rowing with terms like "competition" and "Chungju"; and canoeing with terms like "maritime," "competition," "experience," "leisure," and "tourism." Third, topic modeling analysis indicated that yachting, rowing, and canoeing are perceived as elite sports and maritime leisure sports. However, the perception of these sports has been demonstrated to have little impact on society, public opinion, and social transformation. In summary, when considering these results comprehensively, it can be concluded that yachting and canoeing have gradually shifted from being perceived as elite sports to essential elements of the maritime leisure industry. Contrariwise, rowing remains primarily associated with elite sports, and its popularization as a maritime leisure sport appears limited at this time.

A Study on Research Trends in Metaverse Platform Using Big Data Analysis (빅데이터 분석을 활용한 메타버스 플랫폼 연구 동향 분석)

  • Hong, Jin-Wook;Han, Jung-Wan
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.627-635
    • /
    • 2022
  • As the non-face-to-face situation continues for a long time due to COVID-19, the underlying technologies of the 4th industrial revolution such as IOT, AR, VR, and big data are affecting the metaverse platform overall. Such changes in the external environment such as society and culture can affect the development of academics, and it is very important to systematically organize existing achievements in preparation for changes. The Korea Educational Research Information Service (RISS) collected data including the 'metaverse platform' in the keyword and used the text mining technique, one of the big data analysis. The collected data were analyzed for word cloud frequency, connection strength between keywords, and semantic network analysis to examine the trends of metaverse platform research. As a result of the study, keywords appeared in the order of 'use', 'digital', 'technology', and 'education' in word cloud analysis. As a result of analyzing the connection strength (N-gram) between keywords, 'Edue→Tech' showed the highest connection strength and a total of three clusters of word chain clusters were derived. Detailed research areas were classified into five areas, including 'digital technology'. Considering the analysis results comprehensively, It seems necessary to discover and discuss more active research topics from the long-term perspective of developing a metaverse platform.

A Trend Analysis and Policy proposal for the Work Permit System through Text Mining: Focusing on Text Mining and Social Network analysis (텍스트마이닝을 통한 고용허가제 트렌드 분석과 정책 제안 : 텍스트마이닝과 소셜네트워크 분석을 중심으로)

  • Ha, Jae-Been;Lee, Do-Eun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.9
    • /
    • pp.17-27
    • /
    • 2021
  • The aim of this research was to identify the issue of the work permit system and consciousness of the people on the system, and to suggest some ideas on the government policies on it. To achieve the aim of research, this research used text mining based on social data. This research collected 1,453,272 texts from 6,217 units of online documents which contained 'work permit system' from January to December, 2020 using Textom, and did text-mining and social network analysis. This research extracted 100 key words frequently mentioned from the analyses of data top-level key word frequency, and degree centrality analysis, and constituted job problem, importance of policy process, competitiveness in the respect of industries, and improvement of living conditions of foreign workers as major key words. In addition, through semantic network analysis, this research figured out major awareness like 'employment policy', and various kinds of ambient awareness like 'international cooperation', 'workers' human rights', 'law', 'recruitment of foreigners', 'corporate competitiveness', 'immigrant culture' and 'foreign workforce management'. Finally, this research suggested some ideas worth considering in establishing government policies on the work permit system and doing related researches.

A Study on the Consumer's Perception of HiSeoul Fashion Show Using Big Data Analysis (빅데이터 분석을 활용한 하이서울패션쇼에 대한 소비자 인식 조사)

  • Han, Ki Hyang
    • Journal of Fashion Business
    • /
    • v.23 no.5
    • /
    • pp.81-95
    • /
    • 2019
  • The purpose of this study is to research consumers' perception of the HiSeoul fashion show, which is being used by new designers as a means of promotion, and to propose a strategy for revitalizing new designer brands. This was done in order to secure basic data from fashion consumers, to help guide marketing strategies and promote rising designers. In this research, the consumers' perception of HiSeoul fashion show was verified using text-mining, data refinement and word clouding that was undertaken by TEXTOM3.0. Also, semantic network analysis, CONCOR analysis and visualization of the analysis results were performed using Ucinet 6.0 and NetDraw. "HiSeoul fashion show" was used as the keyword for text-mining and data was collected from March 1, 2018 to April 30, 2019. Using frequency analysis, TF-IDF, and N-gram, it was also shown that consumers are aware of places where shows are held, such as DDP and Igansumun. It was also revealed that consumers recognize rising designer brands, designer's names, the names of guests attending the show and the photo times. This study is meaningful in that it not only confirmed consumers' interest in new designer brands participating in the HiSeoul Fashion Show through big data but also confirmed that it is available as a marketing strategy to boost brand sales. This study suggests using HiSeoul show room to induce consumer sales, or inviting guests that match the brand image to promote them on SNS on the day the show is held for a marketing strategy.

A Study on the Response of Military Sexual Violence: Based on Big Data Analysis of Related Articles (군 성폭력 대응 실태연구: 관련 기사 빅 데이터 분석 중심)

  • Young-Ran Kim;Min-Sun Lee;Hyun Song
    • Industry Promotion Research
    • /
    • v.8 no.4
    • /
    • pp.131-137
    • /
    • 2023
  • This study collected and analyzed articles related to military sex crimes covered in the news from February 2019 to May 28, 2022 in order to identify problems arising from sexual crimes in the military. In order to understand the current status of military sexual violence reported in the media, articles were collected using BIGKinds, a news big data analysis system, and using the Textom program, the study was conducted using frequency analysis by period, word cloud, and semantic network analysis techniques for keywords. The study was conducted using the technique. As a result of data analysis, first, it was confirmed that the public's attention was focused on the victims in reports related to sex crimes within the military. Second, the problem of the lukewarm system of the relevant authorities in responding to sex crimes was revealed. Third, there was a lack of support for victims of sex crimes.