• Title/Summary/Keyword: Semantic recognition

Search Result 197, Processing Time 0.023 seconds

Robust 2D human upper-body pose estimation with fully convolutional network

  • Lee, Seunghee;Koo, Jungmo;Kim, Jinki;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.2
    • /
    • pp.129-140
    • /
    • 2018
  • With the increasing demand for the development of human pose estimation, such as human-computer interaction and human activity recognition, there have been numerous approaches to detect the 2D poses of people in images more efficiently. Despite many years of human pose estimation research, the estimation of human poses with images remains difficult to produce satisfactory results. In this study, we propose a robust 2D human body pose estimation method using an RGB camera sensor. Our pose estimation method is efficient and cost-effective since the use of RGB camera sensor is economically beneficial compared to more commonly used high-priced sensors. For the estimation of upper-body joint positions, semantic segmentation with a fully convolutional network was exploited. From acquired RGB images, joint heatmaps accurately estimate the coordinates of the location of each joint. The network architecture was designed to learn and detect the locations of joints via the sequential prediction processing method. Our proposed method was tested and validated for efficient estimation of the human upper-body pose. The obtained results reveal the potential of a simple RGB camera sensor for human pose estimation applications.

Restricting Answer Candidates Based on Taxonomic Relatedness of Integrated Lexical Knowledge Base in Question Answering

  • Heo, Jeong;Lee, Hyung-Jik;Wang, Ji-Hyun;Bae, Yong-Jin;Kim, Hyun-Ki;Ock, Cheol-Young
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.191-201
    • /
    • 2017
  • This paper proposes an approach using taxonomic relatedness for answer-type recognition and type coercion in a question-answering system. We introduce a question analysis method for a lexical answer type (LAT) and semantic answer type (SAT) and describe the construction of a taxonomy linking them. We also analyze the effectiveness of type coercion based on the taxonomic relatedness of both ATs. Compared with the rule-based approach of IBM's Watson, our LAT detector, which combines rule-based and machine-learning approaches, achieves an 11.04% recall improvement without a sharp decline in precision. Our SAT classifier with a relatedness-based validation method achieves a precision of 73.55%. For type coercion using the taxonomic relatedness between both ATs and answer candidates, we construct an answer-type taxonomy that has a semantic relationship between the two ATs. In this paper, we introduce how to link heterogeneous lexical knowledge bases. We propose three strategies for type coercion based on the relatedness between the two ATs and answer candidates in this taxonomy. Finally, we demonstrate that this combination of individual type coercion creates a synergistic effect.

Research Trends of Studies Related to the Nature of Science in Korea Using Semantic Network Analysis (언어 네트워크 분석을 이용한 과학의 본성에 관한 국내연구 동향)

  • Lee, Sang-Gyun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.9 no.1
    • /
    • pp.65-87
    • /
    • 2016
  • The purpose of this study is to examine Korean journals related to science education in order to analyze research trends into Nature of science in Korea. The subject of the study is the level of Korean Citation Index (KCI-listed, KCI listing candidates), that can be searched by the key phrase, "Nature of science" in Korean language through the RISS service. In this study, the Descriptive Statistical Analysis Method is utilized to discover the number of research articles, classifying them by year and by journal. Also, the Sementic Network Analysis was conducted to Word Cloud Analysis the frequency of key words, Centrality Analysis, co-occurrence and Cluster Dendrogram Analysis throughout a variety of research articles. The results show that 91 research papers were published in 25 journals from 1991 to 2015. Specifically, the 2 major journals published more than 50% of the total papers. In relation to research fields., In addition, key phrases, such as 'Analysis', 'recognition', 'lessons', 'science textbook', 'History of Science' and 'influence' are the most frequently used among the research studies. Finally, there are small language networks that appear concurrently as below: [Nature of science - high school student - recognize], [Explicit - lesson - effect], [elementary school - science textbook - analysis]. Research topic have been gradually diversified. However, many studies still put their focus on analysis and research aspects, and there have been little research on the Teaching and learning methods.

Modern Methods of Text Analysis as an Effective Way to Combat Plagiarism

  • Myronenko, Serhii;Myronenko, Yelyzaveta
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.242-248
    • /
    • 2022
  • The article presents the analysis of modern methods of automatic comparison of original and unoriginal text to detect textual plagiarism. The study covers two types of plagiarism - literal, when plagiarists directly make exact copying of the text without changing anything, and intelligent, using more sophisticated techniques, which are harder to detect due to the text manipulation, like words and signs replacement. Standard techniques related to extrinsic detection are string-based, vector space and semantic-based. The first, most common and most successful target models for detecting literal plagiarism - N-gram and Vector Space are analyzed, and their advantages and disadvantages are evaluated. The most effective target models that allow detecting intelligent plagiarism, particularly identifying paraphrases by measuring the semantic similarity of short components of the text, are investigated. Models using neural network architecture and based on natural language sentence matching approaches such as Densely Interactive Inference Network (DIIN), Bilateral Multi-Perspective Matching (BiMPM) and Bidirectional Encoder Representations from Transformers (BERT) and its family of models are considered. The progress in improving plagiarism detection systems, techniques and related models is summarized. Relevant and urgent problems that remain unresolved in detecting intelligent plagiarism - effective recognition of unoriginal ideas and qualitatively paraphrased text - are outlined.

Application of YOLOv5 Neural Network Based on Improved Attention Mechanism in Recognition of Thangka Image Defects

  • Fan, Yao;Li, Yubo;Shi, Yingnan;Wang, Shuaishuai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.245-265
    • /
    • 2022
  • In response to problems such as insufficient extraction information, low detection accuracy, and frequent misdetection in the field of Thangka image defects, this paper proposes a YOLOv5 prediction algorithm fused with the attention mechanism. Firstly, the Backbone network is used for feature extraction, and the attention mechanism is fused to represent different features, so that the network can fully extract the texture and semantic features of the defect area. The extracted features are then weighted and fused, so as to reduce the loss of information. Next, the weighted fused features are transferred to the Neck network, the semantic features and texture features of different layers are fused by FPN, and the defect target is located more accurately by PAN. In the detection network, the CIOU loss function is used to replace the GIOU loss function to locate the image defect area quickly and accurately, generate the bounding box, and predict the defect category. The results show that compared with the original network, YOLOv5-SE and YOLOv5-CBAM achieve an improvement of 8.95% and 12.87% in detection accuracy respectively. The improved networks can identify the location and category of defects more accurately, and greatly improve the accuracy of defect detection of Thangka images.

MRU-Net: A remote sensing image segmentation network for enhanced edge contour Detection

  • Jing Han;Weiyu Wang;Yuqi Lin;Xueqiang LYU
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3364-3382
    • /
    • 2023
  • Remote sensing image segmentation plays an important role in realizing intelligent city construction. The current mainstream segmentation networks effectively improve the segmentation effect of remote sensing images by deeply mining the rich texture and semantic features of images. But there are still some problems such as rough results of small target region segmentation and poor edge contour segmentation. To overcome these three challenges, we propose an improved semantic segmentation model, referred to as MRU-Net, which adopts the U-Net architecture as its backbone. Firstly, the convolutional layer is replaced by BasicBlock structure in U-Net network to extract features, then the activation function is replaced to reduce the computational load of model in the network. Secondly, a hybrid multi-scale recognition module is added in the encoder to improve the accuracy of image segmentation of small targets and edge parts. Finally, test on Massachusetts Buildings Dataset and WHU Dataset the experimental results show that compared with the original network the ACC, mIoU and F1 value are improved, and the imposed network shows good robustness and portability in different datasets.

Efficient Inference of Image Objects using Semantic Segmentation (시멘틱 세그멘테이션을 활용한 이미지 오브젝트의 효율적인 영역 추론)

  • Lim, Heonyeong;Lee, Yurim;Jee, Minkyu;Go, Myunghyun;Kim, Hakdong;Kim, Wonil
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.67-76
    • /
    • 2019
  • In this paper, we propose an efficient object classification method based on semantic segmentation for multi-labeled image data. In addition to various pixel unit information and processing techniques such as color information, contour, contrast, and saturation included in image data, a detailed region in which each object is located is extracted as a meaningful unit and the experiment is conducted to reflect the result in the inference. We use a neural network that has been proven to perform well in image classification to understand which object is located where image data containing various class objects are located. Based on these researches, we aim to provide artificial intelligence services that can classify real-time detailed areas of complex images containing various objects in the future.

Semantic Segmentation of Drone Images Based on Combined Segmentation Network Using Multiple Open Datasets (개방형 다중 데이터셋을 활용한 Combined Segmentation Network 기반 드론 영상의 의미론적 분할)

  • Ahram Song
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.967-978
    • /
    • 2023
  • This study proposed and validated a combined segmentation network (CSN) designed to effectively train on multiple drone image datasets and enhance the accuracy of semantic segmentation. CSN shares the entire encoding domain to accommodate the diversity of three drone datasets, while the decoding domains are trained independently. During training, the segmentation accuracy of CSN was lower compared to U-Net and the pyramid scene parsing network (PSPNet) on single datasets because it considers loss values for all dataset simultaneously. However, when applied to domestic autonomous drone images, CSN demonstrated the ability to classify pixels into appropriate classes without requiring additional training, outperforming PSPNet. This research suggests that CSN can serve as a valuable tool for effectively training on diverse drone image datasets and improving object recognition accuracy in new regions.

A Study on the User Experience at Unmanned Cafe Using Big Data Analsis: Focus on text mining and semantic network analysis (빅데이터를 활용한 무인카페 소비자 인식에 관한 연구: 텍스트 마이닝과 의미연결망 분석을 중심으로)

  • Seung-Yeop Lee;Byeong-Hyeon Park;Jang-Hyeon Nam
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.3
    • /
    • pp.241-250
    • /
    • 2023
  • Purpose - The purpose of this study was to investigate the perception of 'unmanned cafes' on the network through big data analysis, and to identify the latest trends in rapidly changing consumer perception. Based on this, I would like to suggest that it can be used as basic data for the revitalization of unmanned cafes and differentiated marketing strategies. Design/methodology/approach - This study collected documents containing unmanned cafe keywords for about three years, and the data collected using text mining techniques were analyzed using methods such as keyword frequency analysis, centrality analysis, and keyword network analysis. Findings - First, the top 10 words with a high frequency of appearance were identified in the order of unmanned cafes, unmanned cafes, start-up, operation, coffee, time, coffee machine, franchise, and robot cafes. Second, visualization of the semantic network confirmed that the key keyword "unmanned cafe" was at the center of the keyword cluster. Research implications or Originality - Using big data to collect and analyze keywords with high web visibility, we tried to identify new issues or trends in unmanned cafe recognition, which consists of keywords related to start-ups, mainly deals with topics related to start-ups when unmanned cafes are mentioned on the network.

Design of Sidewalk Landscape Considering Human Sensibility (인간의 감성을 고려한 보도경관 설계모형에 관한 연구)

  • Lee, Byeong-Ju;Park, Sang-Myeong;Nam, Gung-Mun
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.6 s.92
    • /
    • pp.119-127
    • /
    • 2006
  • Recently. there are demanding a better sidewalk environment considering side of psychic as well as physical factors as the rapid growth of cities and improvement of traffic consciousness. Also. it needs to give a better sidewalk environment because those pedestrians evade a sidewalk space with minimum Physical design standards. So. we think very important that get a grip what makes Pedestrian feel a comfort and amenity in sidewalk above all. In this study, we carried out a cognition experiment of sidewalk environment on considering the human's psychic with Sensibility Ergonomics and the survey method using SD (Semantic Differential) scale. And we made a recognition evaluation model of sidewalk landscape and sensibility recognition model of sidewalk design factors using LISREL model that analysis sensibility recognition of sensibility adjective by SD scale. In results, we found out a possibility of the design with comfort and amenity in sidewalk environment as considering Sensibility Ergonomics, and an importance of harmonious green environment as a roadside tree etc. above all.