• 제목/요약/키워드: Semantic Inference

검색결과 139건 처리시간 0.027초

소아 및 종양 핵의학 영상판독에서 RDF/OWL 데이터의 유용성 (Usefulness of RDF/OWL Format in Pediatric and Oncologic Nuclear Medicine Imaging Reports)

  • 황경훈;이해준;고건;최덕주;선용한
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권4호
    • /
    • pp.128-134
    • /
    • 2015
  • Recently, the structured data format in RDF/OWL has played an increasingly vital role in the semantic web. We converted pediatric and oncologic nuclear medicine imaging reports in free text into RDF/OWL format and evaluated the usefulness of nuclear medicine imaging reports in RDF/OWL by comparing SPARQL query results with the manually retrieved results by physicians from the reports in free text. SPARQL query showed 95% recall for simple queries and 91% recall for dedicated queries. In total, SPARQL query retrieved 93% (51 lesions of 55) recall and 100% precision for 20 clinical query items. All query results missed by SPARQL query were of some inference. Nuclear medicine imaging reports in the format of RDF/OWL were very useful for retrieving simple and dedicated query results using SPARQL query. Further study using more number of cases and knowledge for inference is warranted.

Icefex: Protocol Format Extraction from IL-based Concolic Execution

  • Pan, Fan;Wu, Li-Fa;Hong, Zheng;Li, Hua-Bo;Lai, Hai-Guang;Zheng, Chen-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권3호
    • /
    • pp.576-599
    • /
    • 2013
  • Protocol reverse engineering is useful for many security applications, including intelligent fuzzing, intrusion detection and fingerprint generation. Since manual reverse engineering is a time-consuming and tedious process, a number of automatic techniques have been proposed. However, the accuracy of these techniques is limited due to the complexity of binary instructions, and the derived formats have missed constraints that are critical for security applications. In this paper, we propose a new approach for protocol format extraction. Our approach reasons about only the evaluation behavior of a program on the input message from concolic execution, and enables field identification and constraint inference with high accuracy. Moreover, it performs binary analysis with low complexity by reducing modern instruction sets to BIL, a small, well-specified and architecture-independent language. We have implemented our approach into a system called Icefex and evaluated it over real-world implementations of DNS, eDonkey, FTP, HTTP and McAfee ePO protocols. Experimental results show that our approach is more accurate and effective at extracting protocol formats than other approaches.

영어 작문 자동채점에서 ConceptNet과 작문 프롬프트를 이용한 주제-이탈 문서의 자동 검출 (Automatic Detection of Off-topic Documents using ConceptNet and Essay Prompt in Automated English Essay Scoring)

  • 이공주;이경호
    • 정보과학회 논문지
    • /
    • 제42권12호
    • /
    • pp.1522-1534
    • /
    • 2015
  • 본 연구에서는 미리 구축해 놓은 학습데이터 없이도 입력된 작문이 주어진 작문 주제에 적합한 내용인지 아닌지를 자동으로 판단할 수 있는 방법을 제안한다. ConceptNet은 다양한 종류의 문서에서 추출한 자연언어 문장들로부터 구축된 그래프 형태의 지식베이스이다. 본 연구에서는 작문 주제에 해당하는 작문 프롬프트(essay prompt)와 ConceptNet만을 이용하여 문서의 주제-이탈 여부를 판별하는 방법을 제안한다. ConceptNet에서 두 개념간의 최단 경로를 찾고 이에 대한 의미 유사도를 계산하는 방법을 제안한다. 이를 이용하여 작문 프롬프트와 수험생 작문 내용을 ConceptNet의 개념들로 매핑하고 이 개념들 사이의 의미 유사도를 계산하여 작문 프롬프트와 수험생 작문 사이의 주제 부합 여부를 판단한다. 8개의 작문 시험을 수행하여 얻은 수험생 작문 데이터에 대하여 평가를 수행한 결과 기존의 연구에 비해 좋은 성능을 얻을 수 있었다. ConceptNet을 활용하면 유의미한 단순 추론이 가능하기 때문에 본 연구에서 제안한 방법은 추론을 요하는 작문 문제에도 적용 가능함을 보였다.

전문용어의 처리에 의한 도메인 온톨로지의 구축 (Domain-specific Ontology Construction by Terminology Processing)

  • 임수연;송무희;이상조
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.353-360
    • /
    • 2004
  • 온톨로지는 특정 도메인에 사용되는 용어들과 그 용어들 간의 관계를 정의하고, 이를 계층구조로 표현한 것을 말한다. 본 논문에서는 전문용어의 처리에 기반 한 도메인 특정적인 온톨로지의 반자동 구축방안을 제안하고자 한다. 이를 위하여 도메인 텍스트 내에서 전문용어를 구성하고 있는 명사나 접미사의 패턴을 분류하고, 이에 따라 전문용어를 추출하고 계층구조를 구하는 알고리즘을 제안한다. 실험은 약학 관련 문서를 대상으로 하였으며, 단일어절 전문용어를 인식한 결과 평균 92.57%, 다중어절 전문용어의 경우 평균 66.64%의 정확도를 보였다. 구축된 온톨로지는 의미정보와 함께 전문용어를 구성하는 특정 명사나 접미사를 중심으로 자연스런 의미 군을 형성함으로써 정보검색 등의 전문적인 지식의 접근에 유용하게 쓰일 수 있으며, 검색의 성능을 향상시키기 위한 추론의 기반으로도 이용할 수 있다.

Learning Similarity with Probabilistic Latent Semantic Analysis for Image Retrieval

  • Li, Xiong;Lv, Qi;Huang, Wenting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권4호
    • /
    • pp.1424-1440
    • /
    • 2015
  • It is a challenging problem to search the intended images from a large number of candidates. Content based image retrieval (CBIR) is the most promising way to tackle this problem, where the most important topic is to measure the similarity of images so as to cover the variance of shape, color, pose, illumination etc. While previous works made significant progresses, their adaption ability to dataset is not fully explored. In this paper, we propose a similarity learning method on the basis of probabilistic generative model, i.e., probabilistic latent semantic analysis (PLSA). It first derives Fisher kernel, a function over the parameters and variables, based on PLSA. Then, the parameters are determined through simultaneously maximizing the log likelihood function of PLSA and the retrieval performance over the training dataset. The main advantages of this work are twofold: (1) deriving similarity measure based on PLSA which fully exploits the data distribution and Bayes inference; (2) learning model parameters by maximizing the fitting of model to data and the retrieval performance simultaneously. The proposed method (PLSA-FK) is empirically evaluated over three datasets, and the results exhibit promising performance.

분산 메모리 다중프로세서 환경에서의 병렬 음성인식 모델 (A Parallel Speech Recognition Model on Distributed Memory Multiprocessors)

  • 정상화;김형순;박민욱;황병한
    • 한국음향학회지
    • /
    • 제18권5호
    • /
    • pp.44-51
    • /
    • 1999
  • 본 논문에서는 음성과 자연언어의 통합처리를 위한 효과적인 병렬계산모델을 제안한다. 음소모델은 연속 Hidden Markov Model(HMM)에 기반을 둔 문맥종속형 음소를 사용하며, 언어모델은 지식베이스를 기반으로 한다. 또한 지식베이스를 구성하기 위해 계층구조의 semantic network과 병렬 marker-passing을 추론 메카니즘으로 쓰는 memory-based parsing 기술을 사용한다. 본 연구의 병렬 음성인식 알고리즘은 분산메모리 MIMD(Multiple Instruction Multiple Data) 구조의 다중 Transputer 시스템을 이용하여 구현되었다. 실험결과, 본 연구의 지식베이스 기반 음성인식 시스템의 인식률이 word network 기반 음성인식 시스템보다 높게 나타났으며 code-phoneme 통계정보를 활용하여 인식성능의 향상도 얻을 수 있었다. 또한, 성능향상도(speedup) 관련 실험들을 통하여 병렬 음성인식 시스템의 실시간 구현 가능성을 확인하였다.

  • PDF

온톨로지 파싱 속도향상을 위한 온톨로지 파서 설계 (Ontology Parser Design for Speed Improvement of Ontology Parsing)

  • 김원필;공현장
    • 전자공학회논문지CI
    • /
    • 제47권4호
    • /
    • pp.96-101
    • /
    • 2010
  • 시맨틱 웹에서 핵심 연구는 온톨로지 파싱의 효율성이다. 온톨로지의 효율적 파싱과 추론은 시맨틱 웹의 궁극적인 목적인 의미적인 정보검색의 기반이 된다. 그러나 기존의 온톨로지 저작도구들은 온톨로지 파싱속도에 있어 효율적이지 못하고 있는 실정이다. 따라서, 본 연구에서는 온톨로지가 기술하는 모든 사실을 빠르게 추출하기 위해 2단계에 걸친 온톨로지 파서를 설계 하였다. 정확하고 빠른 파서의 설계를 위해 토큰 추출기에서 온톨로지의 구문의 토큰을 1단계로 추출하고, 이를 바탕으로 트리플 추출기에서 Statement를 추출한다. 이에 본 연구에서 설계한 파서의 속도는 기존의 도구들의 파서보다 빠른 처리가 이루어 짐을 확인할 수 있었다.

온톨로지 기반 상황인지 모델링 연구: u-Convention을 중심으로 (A Study of Ontology-based Context Modeling in the Area of u-Convention)

  • 김성혁
    • 정보관리학회지
    • /
    • 제28권3호
    • /
    • pp.123-139
    • /
    • 2011
  • 유비쿼터스 컴퓨팅의 주요 기술인 상황인지는 환경을 구성하는 다양한 종류의 정보 기기로부터 전달되는 상황 정보를 이해하고 처리하며, 다양한 도메인에 유연하게 적용할 수 있는 상황인지 모델을 필요로 한다. 시맨틱 웹 기술 기반의 온톨로지는 구조화된 공통의 포맷을 이용하고 의미적인 정보의 표현이 가능하므로, 시스템이 상황 정보를 공유하고 이해, 추론함으로써 효과적인 상황인지가 가능하다. 따라서 온톨로지를 이용한 상황인지 모델이 여러 연구에서 제시되어 왔는데, 본 논문에서는 이러한 기존 연구들에 대한 분석을 바탕으로 상황인지 모델의 범용성과 확장성을 위해 온톨로지의 구조를 계층화하고 이를 기반으로 상황인지 시스템을 구현하여 실제 u-Convention 도메인에 적용하였다. 또한 OWL-DL의 기술논리와 SWRL 규칙 추론을 결합함으로써 복합적인 상황을 효과적으로 추론하는 방법을 제시하였다.

귀금속.보석 상품정보 온톨로지 구축에 관한 연구 (A Study on the Development of Ontology based on the Jewelry Brand Information)

  • 이기영
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권7호
    • /
    • pp.247-256
    • /
    • 2008
  • 본 연구에서는 웹 문서에서의 단순 키워드 매칭으로 검색하는 전자상거래시스템의 문제점을 해결하기 위한 방안으로 도메인 온톨로지를 자동으로 생성하고 이를 기반으로 지능형 에이전트기술을 접목함으로서 의사소통이 단일화된 상품검색시스템을 개발한다. 온톨로지 개발은 국제상품분류코드(UNSPSC)와 귀금속 보석 사이트들의 분류정보를 기반으로 대표용어를 추출하고 유사관계 시소러스 적용하여 표준화된 온톨로지를 구축하며 지능형에이전트 기술을 검색 단계에서 접목시켜 사용자에게 정보수집의 효율성을 지원하도록 시맨틱 웹을 지원하는 상거래 시스템을 설계하고 구현한다. 또한 개인화된 검색 환경을 지원하기 위해 사용자 프로파일을 설계하고, 개인화 검색 에이전트와 추론기능을 이용한 검색 환경을 제공함으로서 정보수집의 신속성과 정확한 정보검색이 가능하도록 지원한다.

  • PDF

Modern Methods of Text Analysis as an Effective Way to Combat Plagiarism

  • Myronenko, Serhii;Myronenko, Yelyzaveta
    • International Journal of Computer Science & Network Security
    • /
    • 제22권8호
    • /
    • pp.242-248
    • /
    • 2022
  • The article presents the analysis of modern methods of automatic comparison of original and unoriginal text to detect textual plagiarism. The study covers two types of plagiarism - literal, when plagiarists directly make exact copying of the text without changing anything, and intelligent, using more sophisticated techniques, which are harder to detect due to the text manipulation, like words and signs replacement. Standard techniques related to extrinsic detection are string-based, vector space and semantic-based. The first, most common and most successful target models for detecting literal plagiarism - N-gram and Vector Space are analyzed, and their advantages and disadvantages are evaluated. The most effective target models that allow detecting intelligent plagiarism, particularly identifying paraphrases by measuring the semantic similarity of short components of the text, are investigated. Models using neural network architecture and based on natural language sentence matching approaches such as Densely Interactive Inference Network (DIIN), Bilateral Multi-Perspective Matching (BiMPM) and Bidirectional Encoder Representations from Transformers (BERT) and its family of models are considered. The progress in improving plagiarism detection systems, techniques and related models is summarized. Relevant and urgent problems that remain unresolved in detecting intelligent plagiarism - effective recognition of unoriginal ideas and qualitatively paraphrased text - are outlined.