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Abstract 
 

Protocol reverse engineering is useful for many security applications, including intelligent 

fuzzing, intrusion detection and fingerprint generation. Since manual reverse engineering is a 

time-consuming and tedious process, a number of automatic techniques have been proposed. 

However, the accuracy of these techniques is limited due to the complexity of binary 

instructions, and the derived formats have missed constraints that are critical for security 

applications. In this paper, we propose a new approach for protocol format extraction. Our 

approach reasons about only the evaluation behavior of a program on the input message from 

concolic execution, and enables field identification and constraint inference with high 

accuracy. Moreover, it performs binary analysis with low complexity by reducing modern 

instruction sets to BIL, a small, well-specified and architecture-independent language. We 

have implemented our approach into a system called Icefex and evaluated it over real-world 

implementations of DNS, eDonkey, FTP, HTTP and McAfee ePO protocols. Experimental 

results show that our approach is more accurate and effective at extracting protocol formats 

than other approaches. 
 

 

Keywords: protocol reverse engineering, protocol format extraction, semantic inference, 

concolic execution, intermediate language 
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1. Introduction 

Knowledge of application-level protocol format is useful for many network security 

applications, including intelligent fuzzing [1][2], intrusion detection [3][4] and fingerprint 

generation [5]. However, many protocols in use are closed protocols without publicly 

available specification. Even for open protocols, certain implementations may not exactly 

follow the specification. Thus protocol reverse engineering, the process of extracting the 

application-level protocol used by an implementation, is valuable for the above network 

security applications. 

Currently, protocol reverse engineering is mostly a manual, tedious and time-consuming 

task. For example, the MSN messager protocol has been persistently reverse engineered, since 

the open source clients [6] regularly require patching to support proprietary changes in the 

protocol. To reverse engineer a protocol in a timely manner and keep up the effort through 

time, a number of automatic solutions to protocol reverse engineering have been proposed. 

These solutions can be classified into network-trace based techniques [7][8][9][10] and 

execution-trace based techniques [2][11][12][13][14][15]. Network-trace based techniques 

analyze network traffic by recording the communicaiton between a client and a server, and 

then extract protocol format through message clustering. Although useful in practice, their 

accuracy is often limited by the diversity of messages in the trace. In contrast, execution-trace 

based techniques operate with higher accuracy by observing the execution of the application 

while processing input messages. Furthermore, they provide insight into field semantics that 

are not available to network-trace based techniques. 

The effectiveness of execution-trace based techniques have been proven [11]. However, 

these techniques still have two major limitations: 1) Common application behaviors, such as 

bulk accesses and optimized string processing, give rise to redundancies and inconsistencies in 

the results of field identificaiton. 2) They could not generate constraints on the values of fields, 

since all of them rely on dynamic taint analysis. Such constraints that a message must satisfy to 

be valid are critical for security applications. 

Our work was motivated by these limitations. In this paper, we propose a new approach for 

protocol format extraction. Given the program binary and input message, our approach 

captures the program execution traces, and then reason about the behavior of a program on the 

input message from IL-based concolic execution. Based on the concolic execution state that 

maps variables and memory addresses to both concrete values and symbolic expressions, we 

extract protocol format according to the semantics of executed instructions. To realize our 

approach, We have designed and implemented a system called Icefex. We use five real-world 

protocols to compare the message format automatically extracted by Icefex with the one 

extracted by AutoFormat and Tupni, two of state-of-the-art approaches for format extraction. 

The results demonstrate the proposed approach is superior to previous techniques. 

In summary, the contributions of our paper are the following: 

 We propose a new approach for protocol format execution that perform analysis with 

low complexity by lifting assembly instructions to BIL [16], a small and 

well-specified language. This is in contrast to all the current approaches that process 

hundreds of assembly instructions with intricate and non-intuitive semantics directly. 

 We adopt concolic execution, a more insightful approach for data-flow analysis, to 

track the behavior of a program on the input message. Previous work for extracting 
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protocol format relies on dynamic taint analysis and reports only the information 

about which byte of the input data is used. By comparison, our approach performs 

concolic execution to offer additional information about how the input data is used, 

which is essential for constraint inference. 

 We present new techniques for identifying field boundaries. Protocol 

implementations usually process input messages in stages, such as lexing, parsing and 

evaluation. Exsiting techniques identify the consecutive bytes that used in the operand 

of assembly instruction as a field. Since the instructions in lexing and parsing stages 

read the input bytes without concern for field boundaries, there are many redundancies 

and inconsistencies in the results of field identification. In contrast, Our apparoach 

focuses on the instructions in evaluation stage and is generally more accurate. 

 We propose what we believe are the first techniques to infer field constraints. Current 

approaches have described how to identify field semantics, but none of them have 

discussed how to infer field constraints, which are critical for message replaying. Our 

approach enable constraint inference by extracting symbolic predicates from 

evaluation points of concolic execution, since constraints always exist on the fields 

with static semantics. 

The paper is organized as follows. Section 2 defines the goals of our approach and 

articulates the main challenges. In Section 3, we describe the approach and system architecture. 

Then we introduce the details of concolic execution in Section 4 and present the policies for 

protocol format extraction in Section 5. We evaluate our system in Section 6, Section 7 draws 

conclusion and summarizes future work. 

2. Goals and Challenges 

This paper aims to automatically extract protocol format by analyzing the binary execution 

traces of protocol implementations. The protocol format we seek to extract includes field 

boundaries, field semantics and constraints on the values of fields. To achieve the goal, we 

face three major chanllenges: 

1) Not all instructions read the message bytes in accordance with field boundaries. 
From a linguistic perspective, the message processing of protocol implementation can be 

divided into three stages: lexing, parsing and evaluation [1]. The binary instructions in lexing 

and parsing stages, such as bulk accesses and optimized string processing, may read the input 

bytes without concern for field boundaries. However, current techniques[11][12][13][14][15] 

monitor all the operations done by a program using dynamic taint analysis, and identify the 

consecutive input bytes that used in the operand of each binary instruction as a field. It has 

been verified that redundacies and inconsistencies are inevitable in the field identification 

results of these techniques. For example, Table 1 shows the field identification at each step of 

the execution for a fragment of assembly instructions. 

Table 1. Field identification at each step of the execution for example program 
Line Instruction Taint Record Identification 

1 mov esi, [esp+019Ch] esi {0,1,2,3}   

2 and esi, 0FFh esi {0,1,2,3}  0,4   

3 lea eax, [esi-1] esi, eax {0,1,2,3}  0,4   

4 cmp eax, 0E2h esi, eax {0,1,2,3}  0,4   

5 jz loc_527169 esi, eax {0,1,2,3}   
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The code fragment in Table 1 is acquired from Emule 0.48a, a real-world program for P2P 

communication.The beginning of this fragment loads the first four bytes of the input message 

into register esi. For all input bytes are marked as tainted, esi is marked by a set of symbol 

tags. On line 3, esi (tainted) is subtracted to eax (untainted). Since all the operations on line 

2, 3 and 4 use the consecutive bytes {0,1,2,3} in the operand, current techniques will identify 

the 2-tuple 0,4   as a field repeatedly, where the first element denotes field offset and the 

second element denotes field length. Even worse, the real effect of the instruction fragment is 

to make a conditional jump depending on the first input byte, and 0,4   will conflict with the 

field 1,4   which is identified in the subsequent execution. 

In order to remove the redundancy in the results of field identification, AutoFormat [12] 

builds a protocol field tree to store the identified fields and merges the internal nodes which 

have only one child. Tupni [14] uses greedy algorithm to find a consistent subset F of 

identified fields such that all fields in F are disjoint and the combined access weight is 

maximized. However, both of them only provide partial solution and do not guaratee the 

accuracy of field identification. 

2) More detailed information is needed to infer field constraints. Many protocol format 

extraction approaches have described how to identify field semantics, but none of them have 

discussed how to infer the constraints on the values of fields. In addition to field boundaries 

and semantics, we also aim to infer field constraints. Note that current techniques only perform 

dynamic taint analysis to monitor the program as it processes an input, and provide poor 

information about the conditions on the values of fields. For example, we can identify 0,4   

as a field with keyword semantics according to line 4 in Table 1, but we are unaware that the 

value of the field must be 0E3h to proceed the following execution. 

It is natural to employ symbolic execution to reason about constraints on input bytes. 

However, symbolic execution of large programs is bound to be imprecise, since program 

instructions such as pointer manipulations and arithmetic operations are complex and calls to 

operating-system and library functions are impossible to reason about symbolically. Concolic 

execution [17][18] proceeds with a simplified, partial symbolic execution by using concrete 

values to simplify symbolic memory reference and path selection. Unfortunately, concolic 

execution techniques only examine one execution path at a time, where symbolic variables 

reflect only direct data dependencies. Since constraints on the values of multiple fields are 

usually checked in the exit condition of a loop, these techniques will miss the loop 

dependencies that are useful for constraint inference. 

3) It is difficult to perform accurate and faithful analysis on binary code. The ubiquity 

of binary code means any security techniques that only require access to the program binary 

are widely applicable. To the best of our knowledge, all the approaches for protocol format 

extraction disassemble binary code into a sequence of assembly instructions and perform 

program analysis directly over the assembly instructions. However, an assembly-specific 

approach is unattractive because performing analysis on modern complex architectures tends 

to be onerous and tedious. The complexity of mordern architectures mainly involves two 

aspects. First, there are hundreds of instructions in these architectures. For example, x86 

consists of over 300 instructions. Second, the instructions often have intricate and 

non-intuitive semantics. 
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3. Approach and System Overview 

In this section we present our approach for protocol format extraction and introduce the system 

architecture of Icefex. Details of our approach are discussed in later sections. 

Our approach performs IL-based concolic execution on BIL [16], a small set of 

well-specified and architecture-independent instructions, to reason about how an 

implementation of a protocol processes the received messages. Based on the concolic 

execution state, our approach extract protocol according to the semantics of each BIL 

instruction. Firstly, we identify fields based on the observation that evaluation behavior is the 

most prominent evidence of field boundary. Instead of analyzing all the instructions that 

process the received messages, our approach focuses on the instructions which are used to 

evaluate message fields and merge symbolic bytes in each argument of these instructions as a 

field. Moreover, we infer field semantics according to the rich semantic information contained 

in function calls and the effect of field value on the evaluation of other fields. We further 

enhance IL-based concolic execution with the loop-extended policy in [20], which broadens 

the coverage of symbolic results with loops. By relating the number of loop iterations with the 

attributes of fields, we infer constraints on the value of fields with field semantics together. 

To realize our approach, the high-level architecture of Icefex has two phases, as shown in 

Fig. 1. The center box represents the primary contributions of this research. 

 

 
Fig. 1. System architecture of Icefex 

 

In the first phase, we watch over the program execution as it processes a given message and 

collect necessary control-flow information for format extraction. This phase consists of three 

modules: execution monitor, disassembler and control-flow analyzer modules. 

The execution monitor takes the program binary and the messages as input, and output an 

execution trace that contains a record of all the instructions performed by the program. Besides 

the binary code of instructions, the record contains the values of registers and memory 

accesses in each instruction. To introduce the knowledge of the semantics of platform specific 

functions (such as memory allocation), the execution monitor hooks these functions and 

attaches function summary to call instructions in execution trace. The disassembler translates 

machine language into assembly language and generates CFG for the binary. The control-flow 

analyzer module takes as input the CFG, as well as the execution trace, and output the 

immediate post dominators (IPD) of branch instructions and loops for constraint inference. 

In the second phase, we replay and analyze the recorded execution trace to extract protocol 

format. This phase consists of three modules: IL lifting, concolic execution and format 

extraction. For each visited assembly instruction, our analysis consists of three steps. First, the 

IL lifting module lifts the assembly instruction to BIL instructions. We introduce it in Section 

4.1. Next, the concolic execution module gets the operational semantics of BIL instruction and 

updates the concolic execution state. We present it in Section 4.2. Finally, the format 

http://en.wikipedia.org/wiki/Machine_language
http://en.wikipedia.org/wiki/Assembly_language
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extraction module takes as input the state and the BIL instruction, and outputs protocol 

formats. We provide the details in Section 5. 

4. IL-based Concolic Execution 

4.1 Instruction Lifting 

As we discussed in Section 2.2, it is onerous and tedious to analyze each binary instruction in 

execution trace faithful to its semantics. To support analyzing in an easy-to-implement and 

concise fashion, Binary Analysis Platform (BAP) [16] reduces complex instruction sets to BIL, 

a small and formally specified intermediate language. However, BIL is designed for both 

static and dynamic scenarios and has many elements that are unnecessary for our trace-based 

analysis. For simplicity, we lift assembly instructions to an extended version of BIL, on which 

all subsequent analysis is performed. Fig. 2 shows the syntax of the extended BIL. 
 

::    

::    : |       

                          ( , , ) string

                      



 

  goto if then goto else goto

store label specialreg

program      instr

instr           var exp |  exp  exp exp exp

| exp exp | label_kind |  

    

:: ( , ) ( _ , , )

 ::    string

::

   





call with ret halt assert

load cast

high low

reg b u reg

|  exp  argument  var | | 

exp                  exp | exp exp | exp | var | integer | cast kind exp

label_kind integer |

cast_kind        |

:: (string, , )

:: , ,  ,  /, / , mod, mod ,  , ! ,  ,  ,  ,  , &, |, 

:: (unary minus), (bit-wise not)



          

  

unsigned signed

v reg

b s s s s

u

| |

var                  id

                    +       

                     

a :: ( )

:: |



 reg1_t reg8_t reg16_t reg32_t reg64_treg

rgument        var

                  | | |

 

Fig. 2. The syntax of extended BIL 

 

The extension on BIL mainly involves two aspects: 1) the arguments indicating the endianness 

in store and load instructions are omitted, since currently we focus on x86 platform; 2) 

call instruction is introduced to provide the knowledge of the semantics of platform specific 

functions. It is obvious that the operational semantics of BIL instructions remain unchanged in 

spite of the modification and is still suitable for faithful binary program analysis. 

Icefex lifts assemply instructions to BIL in a syntax directed manner, following the two 

steps given by previous work [16]. The first step is to translate assembly instructions into the 

VEX IL, a RISC-based language designed for the Valgrind dynamic instrumentation tool. In 

the second step, VEX IL is lifted to BIL by exposing all the implicit side-effects of instructions. 

Our contribution on instruction lifting is that Icefex also transforms the recorded function 

summary into call instruction, the abstract form of function calls.  

4.2 Operational Semantics for Concolic Execution 

To reason about the behavior of a program on the input message, Icefex maintains the concolic 

execution state and updates it according to the operational semantics of each lifted BIL 

instruction. To describe the operational semantics for concolic execution, we first formally 
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define the concolic execution state. 

DEFINITION 1 (Concolic Execution State) Concolic Execution State S , mapping 

variables and memory addresses to both concrete values and symbolic expressions, is defined 

as a 4-tuple , , ,   S S , where: 

─   maps a memory address to the current byte-sized value at that address, e.g., [ ]m  

denotes the concrete value at address m . 

─   maps a variable to its value, e.g., [ ]var  denotes the concrete value of variable var . 

─ S  maps a memory address to a symbolic expression, e.g., [ ]mS  denotes the symbolic 

value at address m . 

─ 
S  maps a variable to a symbolic expression, e.g., [ ]varS  denotes the symbolic value 

of variable var . 

Generally, consecutive memory locations are usually accessed as a whole. For brevity, we 

define [( , )]m w  as the value of w-byte memory chunk starting from address m and 

[( , )]m wS  as the corresponding symbolic expression. In DEFINITION 1, a symbolic 

expression is a function of input tags. Icefex supports seven kinds of symbolic expressions: 

1) c(:w) represents a w-byte integer constant. 

2) ( , ) 1[ , , ]o w o o wI i i    denotes a w-byte symbolic value, which is obtained by grouping 

byte-sized values represented by input tags 1, ,o o wi i    together. 

3) 1 2be  e  and 
1ue  represent the symbolic result of binary and unary operations on the 

values represented by the expressions 
1e  and 

2e . 

4) ( _ , , )regcast kind ecast  indexes the value represented by the expression e under 

different addressing modes. 

5) 1 2( , , , )nf e e e  describes the symbolic result of function call f that takes the expressions 

1 2, , , ne e e  as parameters. 

6) ( , )e wtable  represents the symbolic value of w-byte memory chunk starting from the 

address represented by the expression e. 

7) ( , , )e w nsub  corresponds to the n-th byte in the w-byte value represented by e. 

DEFINITION 2 (Input Dependence) An expression e depends on the input data ( , )o wI , 

denoted by ( , )

ID

o we I , if and only if all the input tags in ( , )o wI  appears in expression e. If 

we do not care about the details of input tags, ( , )

ID

o we I  can be abbreviated as 
IDe I . 

Based on the above metioned definitions, we redefine the operational semantics of BIL for 

concolic execution, as shown in Fig. 3. Each instruction rule is of the form: 
 

computation

current state , end state   instr
                                           (1) 

 

Given an instruction, Icefex pattern-matches the instruction to find the applicable rule, and 

then performs the computation given in the top of the rule in the current state. If the 

computation is successful, there will be a transition denoted by the operator  to update the 
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state. If no rule matches, Icefex will turn next instruction without any operations. Because the 

next instruction instr  never changes, we omit it from the rules for brevity. 

The expression rules for computation use a similar notation. We denote evaluating an 

expression exp  to both concrete and symbolic values in the current state , , ,   S S  as 

, , , ,     exp v eS S . The expression exp is evaluated by matching exp  to an expression 

rule and performing the attached computation. 

 

1 2 1 1 2 2 1 2

, , , ,    [ ]   [ ]
                            S-ASSIGN  

, , , , : , , ,

, , , , , , ,    = ( )   = [( , ) ]



 





 

   

  

 



           

   

       width reg

exp v e var v var e

var exp

exp exp v e v e w v w v

  Instructions

S S S S

S S S S

S S 1 2

1 2

1 2 1 21 1 2 2

   = [( , ) ]
 S-STORE

, , , , ( , ) , , ,

, , , ( ) , , , ,   [ ( , )]  [ ( , )]
     

, , , , ( ) , , ,

 

 

  

 

  

  

 

 









 

  

           

 

store

call with ret

reg

v w e

exp exp , 

var v e v e var f v v var f e e

 f   var   var

S S

S S S S

S S S S

S S S
 S-CALL  

, , , ,     = ( )     ( )         ( )
             S-TABLE

, , , ( ) [( , )], ( , )  

, , , ,
             







 

  













       

    

    

width

load table

ID

reg tablecheck

reg

exp v e w e I P v

exp, v w e w

exp v e

 Expressions

T T

S

S S

S S

S S

1 2 1 1 2 2 1 2

1 2 1 2

    = ( )     ( )  or ( )  
 S-LOAD

, , , ( ) [( , )], [( , )]  

, , , , , , ,    
   S-BINOP  

, , , ,   

 







  











  

    

        

      

width

load

ID

reg tablecheck

reg

b

b b

w e I P v

exp, v w v w

exp exp v e v e v v v

exp  exp v e e

F F

S S S

S S

S S

1

1 2

  S-VAR
, , , [ ], [ ]   

, , , ,    
            S-UNOP                    S-INT  

, , , ,   , , , ,   

, ,
                    





 







 



 



 

    

       

           



u

u u

var var var

exp v e v v v integer

exp v e integer v v

S S v S

S S

S S S S

S , ,      extend (or extract)  to  bits
 S-CAST 

, , , ( , , ) , ( , , )  





   

    cast castreg reg

exp v e v w

cast_kind exp  v cast_kind e

S

S S c v  

Fig. 3. The operational semantics of the simplified BIL for concolic execution 

 

In the computation, we indicate updating a variable or a memory location x with value v as 

x v , e.g., [ 0x3E]x  denotes setting the value of variable x to the hexadecimal value 

0x3E. As mentioned, the updates of consecutive memory locations are usually simultaneous 

when the instruction 1 2( , , )regexp exp store  stores the expression 2exp  in a reg -type 

memory chunk starting from the address 1exp . 

Since Icefex maintains the memory state (   and S ) with byte granularity, it is essential 

to split the concrete and symbolic value of 2exp  into byte-sized values before the updates. The 

update of  , denoted by [( , ) ]m w v  , is straight-forward by setting the byte-sized value at 

address m+n-1 to the n-th byte of v (0 )n w  . The update of S , denoted by 

[( , ) ]m w e S , is performed according to the form of symbolic expression e. The value of 

[ 1]m n  S  is assigned as follows. 
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1 ( , ) ( , )

( , )

. .( )

[ 1] ( , , ) ,

[ 1] else

o n o w o w

ID

o w

i I s t e I

m n e w n e I  e I

m n





   


    


 

sub

            

      

      

S                                 (2) 

Correspondingly, consecutive memory locations are also accessed simultaneously when the 

expression ( )regexp, load  loads a reg -type memory chunk starting from the address exp . 

The access of  , denoted by [( , )]m w , is performed directly by grouping the byte-sized 

values in the chunk together. The access of S , denoted by [( , )]m wS , depends on the form of 

symbolic values in the chunk (0 )n w  : 

 

( , ) ( [ 1] )

[( , )] ( [ 1] ( , , ))

[( , )] else

o w o nI o n m n i

m w e e n m n sub e w n

m w



 



    


     



            

               

        

S

S S                        (3) 

In addition to tracking direct dependencies, Icefex also pays attention to table lookup, a typical 

form of address dependencies. Table lookups occur when a symbolic expression is used as an 

index of a table to determine the location from which a value is loaded. In this case, the loaded 

value also depends on the memory address where this value is taken from. Since table lookups 

are widely used as switch structures in binary code to parse keyword fields in messages, it is 

important for Icefex to track them as well. 

Given the expression ( )regexp, load , the S-TABLE rule evaluates its symbolic value to 

( , ( ))rege table width  if exp is used as an input-dependent index. In order to distinguish 

table lookups from normal address dependencies, we use the following predicate: 

 

      the address  points to code segment
( )

      else
tablecheck

v
P v


 


T

F
                           (4) 

 

where T maps to true and F maps to false. If T is returned, the S-TABLE rule is implemented. 

Otherwise, the premise for the S-LOAD rule is met and only direct dependencies are tracked. 

By introducing the ( )tablecheckP v  policy, Icefex focuses on the targeted address dependencies 

and avoids the explosion caused by full symbolic pointer dereferences [21]. 

Furthermore, Icefex considers the dependencies between function parameters and the 

returned output. The S-CALL rule is defined for the CALL instruction and outputs the returned 

symbolic value of the form 1 2( , , , )nf e e e  where 1 2, , , ne e e  are the symbolic values of 

parameters. Note that we do not consider the parts of the execution trace inside any of the 

abstracted functions in the course of concolic execution, since their operational semantics have 

already been included as a whole. 

In Fig. 3, we ignore the other six instruction types (halt, assert, if, goto, label 

and special) for three reasons: 1) Since Icefex performs instruction lifting on dynamic 

execution trace, the halt and assert instructions designed for static analysis never exist in 

the lifted BIL instructions; 2) the operational semantics of the if, goto and label 

instructions have no influence over the concolic execution state, while they change the control 
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flow of program execution; 3) the special instruction, standing for any unhandled 

instructions during lifting (e.g., floating point instructions), is rarely used in the message 

processing. Overall, we believe that the concolic execution, performed by using only three 

instruction rules and seven expression rules, is faithful enough and easy-to-understand.  

5. Protocol Format Extraction 

In this section we present our techniques for extracting protocol formats in the light of 

concolic execution state. Icefex extracts protocol format in two phases: field identification, 

semantics and constraint inference, which are described in the following sub-sections. 

5.1 Field Identification 

Current techniques for field identification are based on a unique intuition-the way that an 

implementation of the protocol accesses the input data reveals a wealth of information about 

the field boundaries. However, there are also many instructions that read the input bytes 

without concern for field boundaries, since all variables, such as numbers, pointers and buffers, 

are processed as fixed-width integers in binary code. 

As the basic unit of protocol format, the field is a consecutive sequence of input bytes with 

some meaning. Due to the semantic atomicity of message fields, all the input bytes that are 

evaluated simultaneously must be in the same field. In other words, the evaluation behavior is 

the most prominent evidence of field boundary. Therefore, our approach only focuses on the 

instructions in evaluation stage to avoid the redundancies and inconsistencies in lexing and 

parsing stages. 

Like the tokens in program language, message fields also have two semantic types: static 

semantics and dynamic semantics. The static semantics, such as length, offset and checksums, 

define the field constraints that are too complex to express in syntactic formalisms. The 

dynamic semantics, such as port, IP address and timestamps, define how and when the 

implementation should produce a response behavior. The unique observation we obtain is that 

the fields with dynamic semantics are usually evaluated by function calls, while the fields with 

static semantics are evaluated by either branching points (the instructions that have more than 

one successors in the CFG) or function calls. In BIL, a branching point is a goto instruction 

with input-depended target or an if instruction. Based on this observation, Icefex identifies 

the consecutive bytes that used in the operand of if, goto and call instruction as a field. 

Fig. 4 gives the formalized rules of field identification. 
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Fig. 4. The formalized rules of field identification 
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The field identification rules are similar to the rules in Fig. 3. Somewhat differently, the 

former also take F, the set of fields, as a part of current execution state. If the computation of a 

rule is successful, Icefex will add the identified field to F. Take the F-IF rule for instance, all 

the input bytes in I(o,m) will be taken as a field, if the first parameter’s symbolic value of if 

instruction e1 depends on I(o,m) and there is no I(p,n) that contains I(o,m) and satisfies the condition 

1 ( , )

ID

p ne I . Note that Icefex applies the F-CALL rule to the function calls that have 

parameters with protocol-related semantics. 

The main challenge to apply field identification rules is to find the actual max-sized I(o,m) 

included in a symbolic expression e. In order to eliminate the impact of register alias on binary 

analysis, BIL uses cast to index registers under different addressing modes. As a result, the 

identified field will be inconsistent with protocol format, if we take all the input bytes exsited 

in the symbolic expression as the max-sized I(o,m). Even worse, optimized binary code also uses 

bitwise logical instructions to index registers under different addressing modes, which further 

complicates the computation of rules. To achieve higher accuracy of field identification, 

Icefex revises the input bytes existed as the parameter of cast and bitwise logical operators 

(&, | and ) in e, before combines them to the max-sized I(o,m). 

To summarize our approach, we now return to the example of Table 1 and explain how 

Icefex identifies fields based on concolic execution. Table 2 shows the BIL instructions lifted 

from the assembly instructions in Table 1, and Table 3 shows the Field identification at each 

step of the lifted BIL instructions. For simplicity, Table 3 only gives the update of S , since 

field identification only depends on the symbolic values of variables. 

As Line 1~5 of the BIL instructions are assignment instructions, Icefex applies the 

S-ASSIGN rule to update the concolic execution state, as shown in Table 3. On Line 6, the 

F-IF rule is applied to find the max-sized I(o,m) that the symbolic value of condition 

expression ((I(0,4)&0xFF-0xE3)==0x0)==0x1 depends on. Although I(0,4) exists in the 

expression, Icefex identifies 0,1   as a field, according to the logical operator & that cut out 

I(0,4) to I(0,1). 

Table 2. BIL instructions lifted from assembly instructions 
Assembly instruction BIL instruction 

1. mov esi, [esp+019Ch] 1. R_ESI := load(R_ESP+0x19C, reg32_t) 

2. and esi, 0FFh 2. R_ESI := R_ESI & 0xFF 

3. lea eax, [esi-1] 3. R_EAX := R_ESI-1 

4. cmp eax, 0E2h 

4. T_32t_1 := R_EAX-0xE2 

5. R_ZF := (T_32t_1 ==0x0) 

……       #instructions that update other flags 

5. jz loc_527169 6. if R_ZF == 0x1 then goto loc_527169 else… 

 

Table 3. Field identification at each step of the lifted BIL instructions 

Line Rules Update of 
S (var→e) F 

1 S-ASSIGN R_ESI→I(0,4) {} 

2 S-ASSIGN R_ESI→I(0,4)&0xFF {} 

3 S-ASSIGN R_EAX→I(0,4)&0xFF-1 {} 

4 S-ASSIGN T_32t_1→I(0,4)&0xFF-0xE3 {} 

5 S-ASSIGN R_ZF→(I(0,4)&0xFF-0xE3)==0x0 {} 

6 F-IF  { 0,1  } 
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Compared with the field identification of previous approaches, Icefex avoids the redundancies 

introduced from parsing instructions on line 2~4, by focusing on the evaluation instruction on 

Line 5 (Line 6 of the BIL instruction). Moreover, Icefex evaluates the symbolic expression 

according to the real semantics of the and instruction, and derives the real field boundary. It is 

clear that Icefex identifies fields with higher accuracy than previous approaches. 

5.2 Semantic and Constraint Inference 

Semantic information indicates the intent of message fields, and constraint information 

indicates the dependencies across fields that a message must satisfy to be valid. Both of them 

are critical for understanding or reconstructing messages of unknown protocols. Current 

approaches have described how to identify field semantics, but none of them have discussed 

how to infer field constraints. In this section, we firstly present the details of semantic 

inference in Gofex, and then describe how Gofex infer the constraints accompanied with static 

semantics. 

5.2.1 Semantics Inference 

As we mentioned in Section 5.1, fields with dynamic semantics are usually evaluated by 

function calls, while the fields with static semantics are evaluated by either branching points or 

function calls. For a field evaluated by function calls, Icefex relies on prior work [15] to infer 

its semantics by leveraging the rich semantic information contained in the function parameters. 

For example, given a function call memcmp(e1, e2, e3), e1, e2, e3 are the symbolic expressions 

of parameters. Icefex believes that field , o w  has length semantics if 3 ( , )ID

o we I . 

For a field evaluated by a branching point, the semantics is highly uncertain since binary 

instructions contain poor semantic information. To our minds, how the field value affects the 

evaluation of other fields reflects the semantics. Table 4 expresses the correspondence 

between four field semantics and the corresponding effect of field evaluation. 

 

Table 4. Correspondence between field semantics and the effect of field evaluation 
Field semantics The effect of field evaluation 

keyword 
The field value x should satisfy the symbolic predicate of the form g(x)=c to 

continue the evaluation of subsequent fields, or the program will pick another path. 

checksum 

The field value x should satisfy the symbolic predicate of the form g(x)=g(y, z,…) 

to continue the evaluation of subsequent fields, or the program will no longer 

process the message. y and z are the values of other fields. 

length 
The field value x should satisfy the symbolic predicate of the form g(x){<,>,}c 

iteratively to access the bytes of a field, or the program will exit a loop. 

count 
The field value x should satisfy the symbolic predicate of the form g(x){<,>,}c 

iteratively to evaluate a sequence of repeated fields, or the program will exit a loop. 

 

Algorithm 1. Constraint inference Based on IL-based Concolic Execution 

Input  : BIL instruction intrm, concolic execution state S , the set of identfied fields F current 

control dependence stack CDS, structure tree ST.  

Output: updated F, CDS, ST 

1. InferConstraint (intrm, S , F, CDS, ST) 

2.         while instrm=IPD(CDS.top()) do      /*IPDs are obtained in the first phase of Icefex*/ 

3.                 if CDS.top() evaluates fa then 

4.                         inferSemanticsAndConstraint(fa, ST, CDS) 
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5.                 end if 
6.                 CDS.pop(); 

7.         end while 
8.         f:=identifyField(S ,intrm);                  /*identify field using the rules in Fig. 4 */ 

9.         if f NULL then 

10.                 F:={f} F 

11.                 if instrm is a function call then 

12.                         Infer the semantics and constraint contained in the function 

13.                 end if 
14.                 addNode(f, ST);                                    /*add a leaf node to the resulting ST.*/ 

15.                 addEdge(CDS.top()f, ST);                /*add an edge to the resulting ST.*/ 

16.         end if 
17.         if instrm is a branching point then 

18.                 addNode(instrm);                       /*add an internal node to the resulting ST.*/ 

19.                 addEdge(CDS.top()instrm, ST);    /*add an edge to the resulting ST.*/ 

20.                 CDS.push(instrm); 

21.         end if 
22. return F, CDS, ST 

In a single execution trace, dynamic control dependence reveals runtime effects of branching 

points [22]. We reuse the algorithm in [23] which captures dynamic control dependence by a 

stack called control dependence stack (CDS) and maintains the effects of field identification in 

a structure tree, as shown in Algorithm 1. The underline text describes how we perform 

semantics and constraint inference. 

In Algorithm 1, the instruction sequence affected by a branching point îs  ends with the 

immediate post-dominator ˆ( )iIPD s . Obviously the whole effect of field evaluation is availabe 

when instruction IPD(CDS.top()) is given and CDS.top() is the evaluation point of a field. At 

this point (line 3~5), Icefex infers field semantics heuristically based on the correspondence in 

Table 4. The processing steps of semantic inference are illustrated in Fig. 5, where EP(fa) 

denotes the evaluation point of field fa and 
dcd

i jx y  denotes that execution instance xi 

dynamically control depends on instance yj. 

 

 
Fig. 5. The processing steps of semantic inference 

By the aid of the constructed ST, Icefex derives field semantics as follows: 

 Step 1: Check whether there is another instance of ŝ  that dynamically depends on îs . 

If true, îs  must be an intermediate instance of the branching point in a loop, and the 

inference is terminated to avoid pointless repetition. If false, goto Step 2. 
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 Step 2: The parent node of 
îs  in the ST is checked to determine if 

îs  is the last instance 

of the branching point in a loop or not. If true, goto step 3. If false, 
îs  must be a normal 

instance and we should goto step 4. 

  Step 3: Check if 
1

ˆ
is  has a child node 

k̂t  which is labeled by another field fb in the ST. 

If true, field fa has count semantics, or its semantics is length. 

 Step 4: Check if the form of the symbolic predicates derived from 
îs  is g(x)=c. If true, 

field fa has keyword semantics, or its semantics is checksum. 

Note that the derived semantics is general and can be refined by using more detailed 

information. For example, a field with keyword semantics will be further refined as a format 

distinguisher [10] if the field value serves to differentiate the format of the subsequent part of 

the message. We leave the refinement for future work. 

5.2.2 Constraint Inference 

As the classification of semantics implies, message format constrains the value of a field, if 

and only if the field has static semantics. If a field with static semantics is evaluated by 

function calls, its value is constrained to be consistent with function semantics. Therefore, the 

constraint can be inferred simutaneously with semantic inference. For example, given a 

function call memcmp(e1, e2, e3), e1, e2, e3 are the symbolic expressions of parameters, Icefex 

will also obtain the constraint e3=length(e1) if the memory chunk referenced by e1 depends on 

input bytes. 

When a field with static semantics is evaluated by branching points, its value is constrained 

to execute a path in which all the input bytes of a message are processed correctly. For a 

keyword or checksum field, the constraint is a direct numerical relationship between 

values of fields. While for a length or count field, the constraint is an indirect relationship 

between the field value and the length or repetition count of other fields, For example, Fig. 6(a) 

shows a simple field sequence of a message that indicates the names of sended files, and the 

code in Fig. 6(b) processes the message in a top-down manner. Let the value of the field 

keyword be FILE_SEND and the value of the field file count be 2, concolic execution 

of execution trace is listed in Table 5 and the corresponding dynamic control-flow graph is 

shown in Fig. 6(c). Moreover, The ST constructed by Algorithm 1 is shown in Fig. 6(d). 

 



590                                            Pan et al.: Icefex: protocol format extraction from IL-based concolic exectuion 

 

 

Fig. 6. The example for semantic and constraint inference 

 

Table 5. Correspondence between field semantics and the effect of field evaluation 
Instance Concolic Execution State Loop Extended State 

11 kwdI(0,4)  

21 kwdI(0,4)  

31 kwd:I(0,4); f_count I(4,4)  

41 kwd:I(0,4); f_count I(4,4)  

51 kwd:I(0,4); f_count I(4,4) ; f_name I(8,64)  

61 kwd:I(0,4); f_count I(4,4)-1; f_name I(8,64) f_count I(4,4)-TC1 

42 kwd:I(0,4); f_count I(4,4)-1; f_name I(8,64) f_count I(4,4)-TC1 

52 kwd:I(0,4); f_count I(4,4)-1; f_name I(72,64) f_count I(4,4)-TC1 

62 kwd:I(0,4); f_count I(4,4)-2; f_name I(72,64) f_count I(4,4)-TC1 

43 kwd:I(0,4); f_count I(4,4)-2; f_name I(72,64) f_count I(4,4)-TC1 

81 kwd:I(0,4); f_count I(4,4)-2; f_name I(72,64) f_count I(4,4)-TC1 

For a keyword or checksum field, Icefex also take the symbolic predicate collected at 

branching point as field constraint at step 4 of semantic inference. In Fig. 6, as 21 is the only 

evaluation point of field f1 and the symbolic predicate collected at 21 is 
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Value(f1)==FILE_SEND, Icefex identifies the semantics of f1 as keyword and take the 

predicate as constraint.  

In contrast, inferring constraint on a length or count field needs much more effort 

since it covers a class of paths that include different numbers of loop iterations. In Fig. 6, none 

of the predicates collected at 41, 42 and 43 are equal to the real constraint. To additionally 

express how a field value relates to the length or count of other fields, Icefex enhances 

IL-based concolic execution with a loop-extended policy in [20]. In addition to maintaining 

the data dependencies of variables on input bytes, Icefex introduce trip counts, a new class of 

symbolic tags for the number of times that each loop executes, to identify loop-dependent 

variables. More details about the policy such as loop information extraction and the rules for 

operations on trip counts can be found in [20]. Based on the enhanced concolic execution, 

Icefex infers the loop-related constraints in three steps: 

 Step 1: Collect the symbolic predicate at the last instance of the branch point in a loop. 

Since the symbolic expression of variables also capture certain loop dependent effects, 

the symbolic predicate expresses the relation between trip count and field values. 

 Step 2: Match the loop with the fields over which it operate, and link the trip count to 

the attributes of fields operated in the loop, such as lengths and repetition counts. 

 Step 3: Combine the symbolic predicate in Step 1 together with the link in Step 2 and 

output the relations between field values and the attributes of fields as constraints. 

Let us revisit the example in Fig. 6. Since f2 is evaluated in the exit condition of a loop, 

Icefex performs the inference at 43, the last instance of the branching point in the loop. In the 

first step, the predicate collected at 43 is Value(f2)-TC1=0, where TC1 is the trip count. In the 

second step, Icefex find that TC1 equals to the repetition count of field sequence f3f4, and 

determine the semantics of f2 as count. In the last step, Icefex combines f2-TC1=0 with 

TC1=Count(f3f4) and outputs the resulting constraints as Value(f1)= Count(f3f4). 

6. Implementation and Evaluation 

We evaluated the effectiveness of Icefex by implementing a prototype system based on the 

proposed techniques. In this section, we first describe our implementation details and 

evaluation methodology. After that, we summerize the experimental results. 

6.1 Implementation 

We have implemented Icefex on Ubuntu 9.04. The implementation details of the six modules 

in Icefex are the following: 

Execution monitor. Icefex utilizes TEMU, the dynamic analysis component in Bitblaze 

[24], to take a binary execution trace and record function calls. TEMU is built upon a 

whole-system emulator and supports performing analysis on multi-platforms. 

Disassembler. Our infrastructure uses IDA Pro [25], one of the most popular tools for 

static binary analysis, to disassemble binaries and generate CFGs. 

Control-flow analyzer. We implemented it as an IDA plugin to derive IPDs and loops 

from CFGs, by reusing the standard detection algorithms in [26].This module also takes the 

execution trace as input to avoid unnecessary analysis on the unexecuted instructions. 

IL lifting. Icefex extends the toil tool in Binary Analysis Platform (BAP) [16] to lift 

binary code to the simplified BIL. The extension involves two aspects: 1) transforming the 
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recorded function calls in the trace to call instructions; 2) mapping the IPDs and loops in 

binary code to the lifted BIL. 

Concolic execution. We implemented the concolic execution module in Python to reason 

about the program behavior. It reuses the Python code in the STP solver [27] to perform 

constant folding and algebraic simplification on the maintained symbolic expression. 

Format extraction. This module, the core component of Icefex, is also implemented in 

Python. It starts to work when the monitored program receives a message, and finishes the 

analysis after the analysis of all the input bytes. 

6.2 Evaluation Methodology 

Our experiments evaluated Icefex on 9 representative messages of 5 known protocols (DNS, 

eDonkey, FTP, HTTP and McAfee ePO), as shown in Table 6. The binary size represents the 

main executable of servers if there are several. For simplicity, all of the servers we analyzed 

are binaries running on Windows. As BIL is platform-independent, we believe that Icefex can 

also work well on other platforms. 

Table 6. Summary of the five known protocols in the evaluation 
Protocol Server (Target) Client Binary Size(KB) 

DNS Deadwood 3.2.02 nslookup 63 

eDonkey eMule 0.48a eMule 0.48a 5,184 

FTP FileZilla Server 0.9.41 FileZilla 3.5.3 617 

HTTP Apache 2.4.2 Firefox 15.0.1 1,018 

McAfee ePO McAfee ePO 4.5 McAfee Agent 3.6 1,106 

We use the above protocols to compare the message format automatically extracted by Icefex 

with the the real formats from standard or published specifications. For comparison, our 

experiments also re-implemented and evaluated the approaches in AutoFormat [12] and Tupni 

[14]. The execution traces with taint information are required by AutoFormat and Tupni, and 

we obtained them  using the tracecap plugin in TEMU. As illustrated in Fig. 7, The procedure 

of our experiments consists of four steps: 

sended 

message

1.Manual operation

captured 

message

parsed 

format

extracted

format

3.message parsing

2.format extraction

4.Comparison

client

server

 
Fig. 7. The procedure of our experiments 

 Step 1: We operate the client program of protocol implementations manually to sent 

messages to the server on the guest operating system of TEMU. Both the client and the 

server are in local network. 
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 Step 2: We use the loaded plugin in TEMU to track how the server processes the 

messages from client host. Then, the tools for protocol format extraction, are used to 

analyze the execution trace and output the message format.  

 Step 3: We also capture the network traffic between the client and server using 

Wireshark [28], a popular network protocol analyzer. Since the formats extract by 

Wireshark are not completely error-free [12][15], we further perform deeper field 

discovery manually according to the protocol specification. 

 Step 4: We compare the extracted format to the parsed format and measure the 

accuracy in two aspects: field identification, semantic and constraint inference. 

6.3 Experimental results 

6.3.1 The accuracy of Field Identification 

We count the numbers of fine-grained fields that were identified correctly by AutoFormat, 

Tupni and Icefex. Moreover, we count the number of over-fine-grained fields, each of which 

is only part of a real field. We also count the number of coarse-grained fields, which contain 

input bytes from multiple real fields. The results are reported in Table 7. 

 

Table 7. Comparison of the number of fields identified by AutoFormat, Tupni and Icefex 

Protocol 
Message  

Type 
#Real 

Fields 

AutoFormat Tupni Icefex 

|F| |Fo| |Fc| |F| |Fo| |Fc| |F| |Fo| |Fc| 

DNS Query 13 9 2 1 9 2 1 10 0 1 

eDonkey 

AskSharedFiles 3 2 2 0 3 0 0 3 0 0 

ChangeID 6 4 4 0 4 1 1 6 0 0 

Hello 23 21 4 0 21 1 1 21 0 0 

FTP 
USER Request 4 4 0 0 4 0 0 4 0 0 

RETR Request 4 4 0 0 4 0 0 4 0 0 

HTTP 
GET Request 39 34 15 0 34 15 0 39 0 0 

POST Request 53 46 21 0 46 21 0 53 0 0 

McAfee ePO IncProps 67 0 966 0 28 854 0 62 0 1 

Total 212 124 1014 1 153 894 3 202 0 2 

 

In Table 7, we represent the number of fine-grained fields, over-fine-grained fields and 

coarse-grained fields as |F|, |Fo| and |Fc| respectively. We take the totals of |F|, |Fo| and |Fc|, and 

obtain the accuracies of field identificaion: 124/212=58.5% for Autoformat, 153/212=72.2% 

for Tupni and 202/212=95.3% for Icefex. It is obvious that Icefex is more accurate than 

AutoFormat and Tupni. Particularly, the results of Icefex only contain few coarse-grained 

fields, while the results of others contain both coarse-grained fields and over-fine-grained 

fields. In the following, we describe our experiments in greater details. 

DNS: In this experiment, the message under study is a DNS Query that requests the IP 

address of the host www.google.com. The detailed fields identified by AutoFormat, Tupni and 

Icefex are shown in Fig. 8. Compared to the real format, all the three results contain a 

coarse-grained field that consists of three real fields: ANCount, NSCount and ARCount. By 

analyzing the execution trace, we find out the main reason behind the coarse-grained field is 

that Deadwood simply ignores these three fields. As the missing bytes are consecutive, they 

are merged into one field for the integrity of the message. Moreover, Fig. 8 also shows the 

existence of over-fine-grained fields. As Deadwood access the field Flags at 
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byte-granularity, the two-byte field is considered to be 2 consecutive byte-long fields in both 

AutoFormat and Tupni results. In contrast, Icefex identified the field flags correctly since 

the field is evaluated on a comparison instruction as a whole. 

 

 
Fig. 8. Detailed comparison on the fields identified for the DNS Query message 

eDonkey: Since the messages of eDonkey protocol have various formats, we have used three 

representative messages that differ significantly in length (AskSharedFiles, ChangeID and 

Hello messages). The results in Table 7 show that both AutoFormat and Tupni report 

over-fine-grained fields as well as a coarse-grained field, while Icefex identifies all the 

message fields correctly. To find out the root cause of the errors, we perform a detailed 

comparison between these results and the real format. For example, the fields identified for the 

ChangeID message are shown in Fig. 9. 

 
Fig. 9. Detailed comparison on the fields identified for the eDonkey ChangeID message 
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As illustrated in Table 7, the field Protocol Type is accessed as a four-byte field 0,4   

which overlaps 1,4  (the field Length). To remove the inconsistency, AutoFormat aims at 

the smallest sequence that cannot be further divided into smaller sub-fields and reports 0,1  , 

1,3   and 4,1   as finest-grained fields. Unlike AutoFormat, Tupni uses a greedy algorithm to 

find a consistent subset F of identified fields. Since the access weight of field Length is 

larger than that of field Protocol Type (the former is accessed at the branching point of a 

loop more frequently), Tupni reserves the field 1,4   correctly and reports 0,1   as a field of 

missing bytes. The identification of field Opcode is similar. Somewhat differently, Tupni 

reserves the field 5,4   incorrectly, which leads to a coarse-grained field as well as an 

over-fine-grained field. As expected, Icefex outperforms AutoFormat and Tupni by directly 

reporting Protocol Type and Opcode as byte-long fields at the evaluation points. 

FTP: We exprimented with FTP protocol by monitoring the execution trace of the Filezilla 

server. Because the FTP messages only contain few string fields, Icefex, AutoFormat and 

Tupni have identified the message fields accurately, as shown in Table 7. 

HTTP: In this experiment, we perform analysis on GET Request message and POST 

Request message, both of which send data to the HTTP server as part of request. The results in 

Table 7 show that both AutoFormat and Tupni report over-fine-grained fields. By comparing 

the detailed results with the real format, we found that all the unmatched fields are Quality 

Factor fields which allow the user to indicate the relative degree of preference for the 

media-range. Generally, a Quality Factor field, such as “q=0.500”, expresses the degree 

as a decimal fraction that scales from 0 to 1. Apache accesses the integer part and the fractional 

part separately to derive the fraction value, which is the root cause of the over-fine-grained 

fields in AutoFormat and Tupni results. Instead, Icefex identifies all the Quality Factor 

fields correctly since Apache evaluates each Quality Factor field as a whole. 

McAfee ePO: In this experimemt, we focus on the IncProps message that allow the client 

to check its custom properties. Both AutoFormat and Tupni report numerous 

over-fine-grained fields while Icefex derives almost all the real fields, as shown in Table 7. By 

mapping the message payload to the correponding binary handing code, we found that each 

message is obfuscated by XORing message data with the static byte 0xAA. Because of this, 

AutoFormat identifies each byte of the message as a field since it aims at the smallest sequence 

that cannot be further divided. As regards Tupni, the situation is slightly better. Because the 

access weight of each length field is much larger than the total weight of included bytes, Tupni 

reports all the 28 length fields correctly. In comparison, the result of Icefex exactly matches 

the real format except that 5 fields used for signature are combined to one field. Similar to the 

experiments on DNS Query message, the main reason is that the ePO server simply ingores 

these fields. 

6.3.2 The accuracy of Semantics and Constraint Inference 

In this section, we discuss Icefex’s accuracy on semantics and constraint inference. For each 

evaluated message, we count the number of fields whose semantics are inferred correctly by 

Icefex. The results show that Icefex can derive the real field semantics, which is beyond the 

capabilities of existing approaches. More specifically, Table 8 presents the number of static 

semantics, dynamic semantics and constraints inferred by Icefex. 

Table 8. The results of semantic and constraint inference performed by Icefex 

Protocol 
Message  

Type 

Static Semantics Dynamic Semantics Constraints 

#Real #Inferred #Real #Inferred #Real #Inferred 
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DNS Query 10 7 3 1 10 7 

eDonkey 

AskSharedFiles 3 3 0 0 3 3 

ChangeID 3 3 3 2 3 3 

Hello 18 18 5 2 18 18 

FTP 
USER Request 3 3 1 0 3 3 

RETR Request 3 3 1 1 3 3 

HTTP 
GET Request 34 34 5 1 34 34 

POST Request 48 48 5 1 48 48 

McAfee ePO IncProps 48 45 19 3 48 45 

 

As shown in Table 8, Icefex inferred all the fields with static semantics, except the 

coarse-grained fields that are ignored by the programs. Take the ANCount, NSCount and 

ARCount fields in Fig. 8 for example, their values are set to zero as they indicate no resource 

records in DNS query message. Moreover, unlike current approaches using dynamic taint 

analysis, Icefex also accurately infers the symbolic constraints involved in static semantics. 

For instance, the first field in ePO IncProps message, a two-byte magic field with keyword 

semantics, involves the constraint that Value(fmagic)0xAAAA=0x4F50. 

In comparison, many fields with dynamic semantics are not correctly inferred. There are 

two main reasons behind the limited accuracy of semantic inference: (1) Many fields with 

dynamic semantics, such as TransactionID in DNS message, are evaluated by 

user-defined functions whose abstracts are unavailable. As a result, Icefex only labels these 

fields with static semantics according to the internal instructions of user-defined functions. (2) 

Many fields with dynamic semantics, are not evaluated immediately by the programs. As a 

representative example, the fields about the client properties in ePO IncProps message are 

stored in the server’s database firstly and will not be evaluated until the check or update event 

is triggered. Therefore, Icefex has missed the dynamic semantics of these fields. 

7. Conclusions and Future Work 

We have presented a novel approach for protocol format extraction. Based on IL-based 

concolic execution, our approach can reason about the evaluation behavior of the programs on 

input messages and derive the protocol formats. We have implemented our approach into a 

system called Icefex and evaluated it over several real-world protocols. Experimental results 

show that Icefex can effectively extract protocol formats with higher accuracy and acceptable 

time overhead. 

Currently Icefex is not capable of extracting formats of encrypted messages. We will 

resolve this problem by a more sophisticated implementation, which can automatically 

identify buffers that hold decrypted messages and use these buffers as starting points for 

protocol format extraction. Another limitation of Icefex is the imperfect dynamic semantics 

inference. In the future we plan to perform our analysis on the whole execution trace in a 

session to obtain more information about field semantics. 
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