• Title/Summary/Keyword: Self-oscillation

Search Result 137, Processing Time 0.027 seconds

Study of Characteristics of Self-Excitation in Lifted Laminar Free-Jet Propane Flames Diluted with Nitrogen (질소 희석된 프로판 자유제트 층류부상화염에 있어서 화염 자기진동 특성에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Bae, Dae-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.399-408
    • /
    • 2010
  • The characteristics of lifted laminar propane flames diluted with nitrogen have been investigated experimentally to elucidate self-excitation and the effects of flame curvature. Flame oscillation modes are classified as follows: oscillation induced by heat loss, a combination of oscillations induced by heat loss and buoyancy, and a combination of the oscillations induced by heat loss and diffusive thermal instability. It is shown that the oscillation induced only by heat loss is not relevant to the diffusive thermal instability and hydrodynamic instability caused by buoyancy; this oscillation is observed under all lift-off flame conditions irrespective of the fuel Lewis number. These experimental evidences are displayed through the analysis of the power spectrum for the temporal variation of lift-off height. The possible mechanism of the oscillation induced by heat loss is also discussed.

Analysis on Pressure and Temperature wave of Self Oscillating Heat Pipe (자려 진동 히트파이프의 압력 및 온도 파형 해석)

  • Choi, J.H.;Yoon, D.H.;Oh, C.;Kim, M.H.;Yoon, S.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.43-49
    • /
    • 2000
  • Heat transfer characteristics of self oscillating heat pipe were experimentally investigated for the effect of fill charge ratios and heat loads. The heat pipe used for this study is made of copper capillary, has 0.002m internal diameter, a 0.34m length in one turn and consists of 19 turns. Heating and cooling section each have a length of 70mm. Water was used as working fluid inside heat pipe. As the experimental results, the self oscillating heat pipe was operated by self-exited oscillation and circulation of working fluid and the oscillation within the self oscillating heat pipe assumed chaotic behavior.

  • PDF

A Study on a Linear Phase Conjugate Oscillator with Photorefractive Medium (광굴절 매질로 구성된 선형 위상 공액 발진기의 발진 조건에 관한 연구)

  • 조제황;이우상;양인응;김은수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.9
    • /
    • pp.1108-1114
    • /
    • 1988
  • Usng the P.Yeh's analytic method, we derive the condition for oscillation of a linear phase conjugate oscillator which consists of photorefractive medium and two conventional mirrors. From this general oscillation condition, we obtain the threshold oscillation conditon of a single phase conjugate resonator and the self-oscillation condition of photorefractive medium, then in special case (phase shift =90\ulcorner: no external dc electric field), oscillation conditions of the linear phase conjugate oscillator for any cavity length are derived. The results indicate that, unlike in a phase conjugate oscillator with Kerr-like medium, oscillation cannot occur at special cavity length for given couplinyg strengths.

  • PDF

Behavior of the Edge Flame on Flame Extinction in Buoyancy minimized Methane-Air Non-premixed Counter Triple Co-flow Flames (부력을 최소화한 대향류 삼축 메탄-공기 비예혼합 화염 소화에서 에지화염의 거동)

  • Park, Jin Wook;Park, Jeong;Yun, Jin-Han;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.81-84
    • /
    • 2014
  • A Experimental study on flame extinction behavior was investigated using He curtain flow with counter triple co-flow burner. Buoyancy force was suppressed up to a microgravity level of $10^{-2}-10^{-3}g$ by using He curtain flow. The stability maps were provided with a functional dependency of diluent mole fraction and global strain rate to clarify the differences in flame extinction behavior. The flame extinction curves had C-shapes at various global strain rates. The oscillation and extinction modes were different each other in terms of the global strain rate, and the flames extinction modes could be classified into five modes such as (I) and (II): an extinction through the shrinkage of the outmost edge flame forward the flame center after self-excitation and without self-excitation, respectively, (III): an extinction through rapid advancement of a flame hole while the outmost edge flame is stationary, (IV): self-excitation occurs in the outermost edge flame and the center edge flame and then a donut shaped flame is formed and/or the flame is entirely extinguished, (V): shrinkage of the outermost edge flame without self-excitation followed by shrinkage or survival of the center flame. These oscillation and extinction modes could be identified well to the behavior of edge flame. The result also showed that the edge flame was influenced significantly by the conductive heat losses to the flame center or ambient He curtain flow.

  • PDF

Design of the Self-Oscillation UV Flash Lamp Power Supply and the Characteristic of its Operation Using Self-resonance of the Transformer (트랜스포머의 자가 공진(Self-Resonance) 특성을 이용한 자가 발진(Self-Oscillation) UV 발생 플래시램프 전원장치설계 및 그 동작 특성)

  • Kim, Shin-Hyo;Cho, Dae-Kweon
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.37
    • /
    • pp.35-44
    • /
    • 2014
  • 해상 및 육상용 살균방식으로 UV를 사용하는 시스템이 주종을 이루고 있으며, 의료, 생활, 산업용 시스템에 널리 적용되고 있으며, 근래에는 평형수 처리 방식으로 UV를 적용하는 사례가 등장하고 있다. UV 광원으로는 다양한 램프가 있으며 그 중 제논플레시 램프는 강한 섬광형 방전과 함께 다량의 UV를 방출하는 특성이 있어 매우 효과적이다. 다만, 타 광원에 비하여 높은 방전전압으로 인하여 기존의 전원장치 설계 방식으로는 장치의 크기가 크고 복잡한 문제가 있었으며, 이를 개량하기 위한 본 연구에서는 트랜스포머의 자가 공진(self-resonance)을 이용한 설계 기법을 제안하며, 트랜스포머의 특정주파수에서 고유임피던스 성분을 이용하여 출력전압을 필터링하면 제논방전관이 자가 발진방식으로 동작하므로 종래의 회로구성보다 간단하고 경제적인 아크방전 파워 스테이지의 구성이 가능하다.

  • PDF

Stochastic Analysis of Self-sustained Oscillation Loop for a Resonant Accelerometer

  • Hyun, Chul;Lee, Jang-Gyu;Kang, Tae-Sam;Sung, Sang-Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.574-578
    • /
    • 2004
  • In this paper, a nonlinear feedback system is analyzed for a surface micromachined resonant accelerometer. For this, a brief illustration of the plant dynamics is given. In the analysis, the periodic signal in the nonlinear feedback loop is obtained by the limit cycle point, which is best approximated via the describing function method. Considering the characteristic feature of plant dynamics, a simple phase shifted relay with finite slope is designed for the nonlinearity implementation. With a describing function for random plus sinusoidal input, we analyzed the effect of a white Gaussian noise on oscillation frequency. Finally, simulation and experimental result is given.

  • PDF

Time-division Multiplexing Scheme for Analog Response Analysis (시분할 멀티플렉싱 기법을 이용한 아날로그 회로응답 분석)

  • 노정진
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.2
    • /
    • pp.126-136
    • /
    • 2003
  • We propose a new technique to improve the parametric fault coverage of oscillation test method (OTM). The OTM has been popular as a vectorless scheme for analog circuit test, both as a general defect-oriented technique, as well as an oscillation built-in self- test (BIST) scheme. However, it still requires improvement in several aspects. This paper analyzes the limitation of OTM, and proposes new signature analysis scheme to improve its performance.

Theoretical and Experimental Study on Airfoil Singing (날개 명음소음에 관한 이론 및 실험 연구)

  • Ahn, Byoung-Kwon;Kim, Jong-Hyun;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.476-476
    • /
    • 2009
  • Periodic vortex separations generate periodic vertical forces acting on a trailing edge of an airfoil. When a natural frequency of the trailing edge of the airfoil is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appear, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, a theoretical model is proposed and applied for modeling an airfoil singing. Results are compared with experimental measurements which are carried out in an anechoic wind tunnel.

  • PDF

Theoretical and Experimental Study on Airfoil Singing (날개 명음소음에 관한 이론 및 실험 연구)

  • Ahn, Byoung-Kwon;Lee, Jong-Hyun;Rhee, Wook;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.115-121
    • /
    • 2010
  • Periodic vortex separations generate periodic vertical forces acting on a trailing edge of an airfoil. When a natural frequency of the trailing edge of the airfoil is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appears, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, a theoretical model is proposed and applied for modeling an airfoil singing. Results are compared with experimental measurements which are carried out in an anechoic wind tunnel.

Fluid-Structure Interaction Analysis of Two-Dimensional Wings (2차원 날개의 유체-구조 연성해석)

  • Ahn, Byoung-Kwon;Lee, Suk-Jeong;Kim, Ji-Hye;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.343-348
    • /
    • 2013
  • When a natural frequency of the trailing edge of a wing is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appears, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, we first evaluate main features of oscillating characteristics of the wing. Second we simulate fluid-structure interaction of the wing with a flap using a commercial code, ANSYS-CFX, and investigate lift characteristics in a frequency domain.