• Title/Summary/Keyword: Self-organizing network

Search Result 323, Processing Time 0.027 seconds

Fuzzy and Polynomial Neuron Based Novel Dynamic Perceptron Architecture (퍼지 및 다항식 뉴론에 기반한 새로운 동적퍼셉트론 구조)

  • Kim, Dong-Won;Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2762-2764
    • /
    • 2001
  • In this study, we introduce and investigate a class of dynamic perceptron architectures, discuss a comprehensive design methodology and carry out a series of numeric experiments. The proposed dynamic perceptron architectures are called as Polynomial Neural Networks(PNN). PNN is a flexible neural architecture whose topology is developed through learning. In particular, the number of layers of the PNN is not fixed in advance but is generated on the fly. In this sense, PNN is a self-organizing network. PNN has two kinds of networks, Polynomial Neuron(FPN)-based and Fuzzy Polynomial Neuron(FPN)-based networks, according to a polynomial structure. The essence of the design procedure of PN-based Self-organizing Polynomial Neural Networks(SOPNN) dwells on the Group Method of Data Handling (GMDH) [1]. Each node of the SOPNN exhibits a high level of flexibility and realizes a polynomial type of mapping (linear, quadratic, and cubic) between input and output variables. FPN-based SOPNN dwells on the ideas of fuzzy rule-based computing and neural networks. Simulations involve a series of synthetic as well as experimental data used across various neurofuzzy systems. A detailed comparative analysis is included as well.

  • PDF

Bilingual Lexicon Extraction Using Self-Organizing Maps (자기조직화 지도를 이용한 이중언어사전 자동 구축)

  • Seo, Hyeong-Won;Cheon, Minah;Kim, Jae-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.802-805
    • /
    • 2015
  • 본 논문은 인공신경망(artificial neural network)의 한 종류인 자기조직화 지도(self-organizing map)를 이용하여 비교말뭉치(comparable corpora)로부터 이중언어사전(bilingual lexicon)을 자동으로 구축하는 방법에 대하여 기술한다. 일반적으로 우리가 대상으로 하는 언어 쌍마다 말뭉치 혹은 초기사전과 같은 언어 자원을 수집하고 그것을 필요에 맞게 가공하는 것은 매우 어려운 일이다. 이런 관점에서 볼 때, 비지도학습(unsupervised learning) 방법 중 하나인 자기조직화 지도를 이용하여 사전을 구축하면 다른 방법에 비해 적은 노력으로도 더 높은 성능을 얻을 수 있다. 본 논문에서는 한국어와 불어에 대하여 실험을 하였고, 그 결과 적은 양의 초기사전으로도 주목할 만한 정확도를 얻을 수 있었다. 향후 연구로는 학습 파라미터에 대해 좀 더 다양한 실험을 하고, 다른 언어 쌍으로의 적용 및 기존의 평가사전을 확장하여 더 많은 경우에 대해 실험하는 것을 들 수 있다.

Pattern Classification Algorithm of DNA Chip Image using ANN (신경망을 이용한 DNA칩 영상 패턴 분류 알고리즘)

  • Joo, Jong-Tae;Kim, Dae-Wook;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.556-561
    • /
    • 2006
  • It is very important to classify the DNA Chip image pattern in order to acquire useful information about genetic disease of people. In this paper, we developed the novel pattern classification method of DNA Chip image using MLP based back-propagation and Self organizing Map learning algorithm. And then we compared and analyzed these classified pattern results. Also we carried out experiment in the MV2440 board using CPU Cote for S3C2440(ARM 920T) and PC environment, and displayed its results in order to give the genetic information to user mote easily in various environment.

A Novel Algorithm for Fast Node-search and Redundancy Reduction in Gossip-based P2P Network (빠른 노드 검색과 부하감소를 위한 새로운 가쉽기반 P2P 네트워크 알고리즘)

  • Zhu, Xiao-Wei;Jang, Kyung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.619-622
    • /
    • 2009
  • P2P networks are undergoing rapid progress and inspiring numerous developments by gossip-based protocol. Gossip-based protocols for group communication have attractive scalability and reliability properties. We propose a self-organizing algorithm in the sense that the size of neighbor list achieved without any node knowing the group size. We also propose an efficient mechanism to reduce the redundancy of the system by backing up the nodes in the neighbor list. We present the design, theoretical analysis, and a detailed evaluation of the proposed algorithm and its refinements.

  • PDF

High-Speed Self-Organzing Map for Document Clustering

  • Rojanavasu, Ponthap;Pinngern, Ouen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1056-1059
    • /
    • 2003
  • Self-Oranizing Map(SOM) is an unsupervised neural network providing cluster analysis of high dimensional input data. The output from the SOM is represented in map that help us to explore data. The weak point of conventional SOM is when the map is large, it take a long time to train the data. The computing time is known to be O(MN) for trainning to find the winning node (M,N are the number of nodes in width and height of the map). This paper presents a new method to reduce the computing time by creating new map. Each node in a new map is the centroid of nodes' group that are in the original map. After create a new map, we find the winning node of this map, then find the winning node in original map only in nodes that are represented by the winning node from the new map. This new method is called "High Speed Self-Oranizing Map"(HS-SOM). Our experiment use HS-SOM to cluster documents and compare with SOM. The results from the experiment shows that HS-SOM can reduce computing time by 30%-50% over conventional SOM.

  • PDF

An Algorithm to Update a Codebook Using a Neural Net (신경회로망을 이용한 코드북의 순차적 갱신 알고리듬)

  • 정해묵;이주희;이충웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1857-1866
    • /
    • 1989
  • In this paper, an algorithm to update a codebook using a neural network in consecutive images, is proposed. With the Kohonen's self-organizing feature map, we adopt the iterative technique to update a centroid of each cluster instead of the unsupervised learning technique. Because the performance of this neural model is comparable to that of the LBG algorithm, it is possible to update the codebooks of consecutive frames sequentially in TV and to realize the hardwadre on the real-time implementation basis.

  • PDF

Analyses of Security Mechanism for Wireless Sensor Network (무선 센서 네트워망에서의 보안 메카니즘 분석)

  • Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.744-747
    • /
    • 2008
  • Sensor networks will play an important role in the next generation pervasive computing. But its characteristic of wireless communication brings a peat challenge to the security measures used in the communication protocols. These measures are different from conventional security methods. In this paper, we proposed a security architecture for self-organizing mobile wireless sensor networks. It can prevent most of attacks based on intrusion detection.

  • PDF

SON(Self Organizing Network) 기술 동향

  • Park, Gyeong-Min;Go, Jeong-Ha;Yun, Gang-Jin;Kim, Yeong-Yong
    • Information and Communications Magazine
    • /
    • v.27 no.8
    • /
    • pp.30-36
    • /
    • 2010
  • 본고에서는 통신 기술 발전에 따라 다양화되고 복잡화되는 통신시스템을 효율적으로 관리할 수 있는 SON 기술에 대하여 기본적인 개념을 파악하고, 최근 각 표준화 그룹에서 진행되고 있는 관련 연구내용들을 구체적으로 조사 및 분석한다. 또한 이들 중 주목할 만한 몇 가지 기술들에 관하여 기술함으로써 향후 이동통신 시스템을 위한 SON 기술개발에 있어 기초적인 연구 방향을 제시한다.

The Study on the Trajectory Control of Manipulator Using Self-Organizing Neural Network (자기구성 신경회로망을 이용한 매니플레이터의 궤적제어에 관한 연구)

  • 김동희;신위재;주창복
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.145-148
    • /
    • 2001
  • 본 논문에서는 자기구성 신경회로망을 이용하여 3축 매니퓰레이터의 궤적제어기를 설계한다. 궤적 제어는 경유점을 정하고 각 경유점에 대한 역기구학을 적용하는 제어기로서 본 논문에서는 역기구학의 해를 자기구성 신경회로망을 통해 해결하는 제어기를 설계하고자 한 다. 또한 제어기에서의 은닉층의 활성화 함수는 가우 시안 함수를 사용하고, 은닉층의 파라미터는 오차를 기초로 하여 자동적으로 최적의 파라미터 값을 구함으로 서 유연한 궤적 제어가 되도록 한다.

  • PDF

A Study on Fault Diagnosis in Face-Milling using Artificial Neural Network (인공신경망을 이용한 정면밀링에서 이상진단에 관한 연구)

  • Kim, Won-Il;Lee, Yun-Kyung;Wang, Dyuk-Hyun;Kang, Jae-Kwan;Kim, Byung-Chang;Lee, Kwan-Cheol;Jung, In-Ryung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.57-62
    • /
    • 2005
  • Neural networks, which have learning and self-organizing abilities, can be advantageously used in the pattern recognition. Neural network techniques have been widely used in monitoring and diagnosis, and compare favourable with traditional statistical pattern recognition algorithms, heuristic rule-based approaches, and fuzzy logic approaches. In this study the fault diagnosis of the face-milling using the artificial neural network was investigated. After training, the sample which measure load current was monitored by constant output results.

  • PDF