• Title/Summary/Keyword: Self-noise

Search Result 577, Processing Time 0.024 seconds

An Experimental Study on Frequency Characteristics of the Microphone Array Covered with Kevlar in Closed Test Section Wind Tunnel (폐쇄형 시험부에서 케블라 덮개가 장착된 마이크로폰 어레이의 주파수 특성에 대한 실험적 연구)

  • Hwang, Eun-Sue;Choi, Youngmin;Kim, Yangwon;Cho, Taehwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.150-159
    • /
    • 2015
  • An experimental study on frequency characteristics of the microphone array covered with Kevlar sheet was conducted in the closed test section. Microphones that were flush-mounted in the wall of wind tunnel were subjected to very high flow noise resulting from the turbulence in the wall boundary layer. This noise interference by the boundary layer was referred as 'a microphone self-noise' and various approaches were studied to reduce this interference. Recessed microphone array with high tensioned cover was one of the good approaches to reduce this self-noise. But, the array cover could cause an unexpected interference to the measuring results. In this paper the frequency characteristics of the microphone array with Kevlar cover was experimentally studied. The white noise was used as a reference noise source. Three kinds of tensions for the Kevlar cover were tested and those results were compared with the test results without the Kevlar cover. The gap effect between the cover and microphone head was also tested to find out the proper position of microphone in the array module. Test results show that the mid-tension and 10mm gap was the best choice in the tested cases.

Self-Excited Noise Generation from Laminar Methane/Air Premixed Flames in Thin Annular JetsPut (환형제트에서의 메탄과 공기의 층류 예혼합 화염에서 발생되는 자발적인 소음에 대한 실험적 연구)

  • Jin, S.H.;Joung, J.H.;Kwon, S.J.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.159-165
    • /
    • 2003
  • Self-excited noise generation from laminar flames in thin annular jets of methane/air premixture has been investigated experimentally. Various flames were observed in this flow configuration, including conical shape flames, ring shape flames, steady crown shape flames, and oscillating crown shape flames. Self-excited noise with the total sound pressure level of about 70dB was generated from the oscillating crown shape flames for the equivalence ratio larger than 0.95. Sound pressure and $CH^{\ast}$ chemiluminescence were measured by using a microphone and a photomultiplier tube. The frequency of generated noise was measured as functions of equivalence ratio and premixture velocity. A frequency doubling phenomena have also been observed. The measured $CH^{\ast}$ chemiluminescence data were analyzed from which the corresponding sound pressure has been calculated. By comparing the data with those of measured ones, the noise source can be attributed to the flame front fluctuation near the edge of the oscillating crown-shape flames. The flame stability regime was influenced sensitively to the supplying air through the inner tube.

  • PDF

Self-Excited Noise Generation from Laminar Methane/Air Premixed Flames in Thin Annular Jets

  • Kim K. N.;Joung J. H.;Jin S. H.;Chung S. H.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.147-155
    • /
    • 2004
  • Self-excited noise generation from laminar flames in thin annular jets of methane/air premixture has been investigated experimentally. Various flames were observed in this flow configuration, including conical shape flames, ring shape flames, steady crown shape flames, and oscillating crown shape flames. Self-excited noise with the total sound pressure level of about 70dB was generated from the oscillating crown shape flames for the equivalence ratio larger than 0.95. Sound pressure and $CH^*$ chemiluminescence were measured by using a microphone and a photomultiplier tube. The frequency of generated noise was measured as functions of equivalence ratio and premixture velocity. A frequency doubling phenomena have also been observed. The flame shape during flame oscillation was reconfirmed by a synchronized PIV experiment. The velocity and pressure field were obtained from PIV. The minimum pressure was formed near the edge of flame representing circulation. By comparing the results of sound pressure, flame luminosity and PIV, the noise source can be attributed to the flame front fluctuation near the edge of the oscillating crown-shape flames.

  • PDF

Self-Encoded Spread Spectrum with Iterative Detection under Pulsed-Noise Jamming

  • Duraisamy, Poomathi;Nguyen, Lim
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.276-282
    • /
    • 2013
  • Self-encoded spread spectrum (SESS) is a novel modulation technique that acquires its spreading code from a random information source, rather than using the traditional pseudo-random noise (PN) codes. In this paper, we present our study of the SESS system performance under pulsed-noise jamming and show that iterative detection can significantly improve the bit error rate (BER) performance. The jamming performance of the SESS with correlation detection is verified to be similar to that of the conventional direct sequence spread spectrum (DSSS) system. On the other hand, the time diversity detection of the SESS can completely mitigate the effect of jamming by exploiting the inherent temporal diversity of the SESS system. Furthermore, iterative detection with multiple iterations can not only eliminate the jamming completely but also achieve a gain of approximately 1 dB at $10^{-3}$ BER as compared with the binary phase shift keying (BPSK) system under additive white gaussian noise (AWGN) by effectively combining the correlation and time diversity detections.

Design and Analysis of a Passive-type Self-bearing Step Motor (수동형 셀프-베어링 스텝모터의 설계 및 성능해석)

  • Kwak, Ho-Seong;Choi, Dong-Hoon;Kim, Seung-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.415-420
    • /
    • 2006
  • This paper introduces a new self-bearing motor which combines a homopolar step motor and a passive magnetic bearing. Compared with conventional self-bearing motors which are mostly based on the theory of active magnetic bearings and therefore have some difficulties in design of the complicated flux distribution and control of the levitation force and the torque independently, the proposed self-bearing motor has a very simple and novel structure and operating principle. for the levitation, it works just like passive magnetic bearings which use the repulsive force between permanent magnets. On the other hand, its rotation principle is quite similar to that of a conventional homopolar step motor. In this paper, we introduce the basic structure and the operating principle in detail, and show some results of FEM analysis to predict the performance of the proposed self-bearing motor and further, to get the optimal design parameters.

  • PDF

NONLINEAR ANALYSIS OF SELF-EXCITED VIBRATION IN WHEELED TRACTOR VEHICLE'S DRIVELINE

  • Li, X.H.;Zhang, J.W.;Zeng, C.C.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.535-545
    • /
    • 2006
  • A nonlinear analysis of torsional self-excited vibration in the driveline system for wheeled towing tractors was presented, with a 2-DOF mathematical model. The vibration system was described as a second-order ordinary differential equation. An analytical approach was proposed to the solution of the second-order ODE. The mathematical neighborhood concept was used to construct the interior boundary and the exterior boundary. The ODE was proved to have a limit cycle by using $Poincar\'{e}-Bendixson$ Annulus Theorem when two inequalities were satisfied. Because the two inequalities are easily satisfied, the self-excited vibration is inevitable and even the initial slip rate is little. However, the amplitude will be almost zero when the third inequality is satisfied. Only in a few working modes of the towing tractor the third inequality is not satisfied. It is shown by experiments that the torsional self-excited vibration in the driveline of the vehicle is obvious.

A Study on the effect of Driving Speed and Breaking Power on Squeal Noise of Disk Break (주행속도와 제동력의 변화에 의한 디스크 브레이크의 스퀄 소음에 미치는 영향)

  • Kim J.H.;Kim K.H.;Choi M.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.269-270
    • /
    • 2006
  • Brake noise is classified according to frequency territory: judder, groan and squeal. Squeal noise of disk brake is a noise and self excited vibration with frequency of $1{\sim}10Khz$ caused by the friction force between the disk and the pad of the automobile. Passengers in a vehicle feel uncomfortable. It causes unstable characteristic to the brake system when you try to stop the vehicle. Thus this study aims to find in which conditions the vehicles are stable during the braking hour and find ways to decrease a squeal noise and the vibration by measuring various factors including squeal noise and self excited vibration between the pad and disk brake system during the braking hour. From the result the countermeasure for a squeal noise and a vibration decrease is established. Also the analyzed data is found to be useful and can be applied to the actual brake model.

  • PDF

A study of Instability on Oscillating Laminar Premixed Flames (진동하는 층류예혼합화염의 불안정성에 관한 연구)

  • Lee, Won-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.8-15
    • /
    • 2008
  • When a circular cylinder is placed at the center of a slot burner nozzle, once stable Woflhard-Parker type laminar lean premixed flame is changed to an oscillating flame with self-induced noise. The wrinkled flame surface showed the same pattern and frequency of the Karman vortex street at the downstream of a circular cylinder. The interaction of flame with Karman vortex street is observed to be responsible for flame oscillation. The measured flame oscillation frequency is very similar to the estimated Karman vortex shedding frequency based on the St-Re relationship of the flow past circular cylinder, which could be considered as a strong evidence for the interaction between laminar pre-mixed flame and a Karman vortex street. As Reynolds number increases oscillation frequency decreases and the self-induced noise level increases as well as the flame front is more severly wrinkled. This result suggests that the flame/vortex interaction becomes more active at higher Re.

  • PDF

A study on the development of soundproof panel with self-cleaning properties (표면 자정성을 갖는 방음판 개발에 관한 연구)

  • 윤제원;임정빈;김영찬;김두훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.229-233
    • /
    • 2003
  • The soundproof barrier used to reduce the traffic and rail noise is usually designed to the point of view of the acoustic performance such as absorption ratio and transmission loss. But, because the surface of soundproof barrier is polluted by the air pollutant or discharge gas of automobiles, so it's surface cleary maintained by the periodic washing with detergent. But in this case the environmental pollution and the working expenses are worried. So, the objective of this study is to develope the soundproof panel with the self-cleaning properties only by raining.

  • PDF