• Title/Summary/Keyword: Self-healing materials

Search Result 91, Processing Time 0.026 seconds

Characterization of crack self-healing of silicon carbide by hot press sintering (열간가압소결법으로 제조한 탄화규소의 균열자기치유 특성)

  • Kim, Seong-Hoon;Kim, Kyung-Hun;Dow, Hwan-Soo;Park, Joo-Seok;Kim, Kyung-Ja;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.2
    • /
    • pp.62-66
    • /
    • 2016
  • In this study, it was investigated that characteristic of crack-self-healing of hot-pressed SiC. SiC ceramics was sintered with $Al_2O_3$ and $Y_2O_3$ sintering additive by hot press. Sintering was performed in hot-press furnace in flowing argon (Ar), holding for 3 hr under $1950^{\circ}C$ and 50 MPa. The sintered SiC was machined into 3-point bending strength specimen of $3{\times}4{\times}40mm$, and introduced pre-crack by Vickers indentation at 49.6 N. Specimens were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), 3-point bending strength after heat treatment at $1200{\sim}1400^{\circ}C$ for 1~10 hr. The best crack-self-healing ability was achieved 770 MPa 3-point bending strength by heat treatment at $1300^{\circ}C$ for 5 hr.

Evaluation of Bond Performance of Self-Healing Agents Using Single lap Shear Test (Single Lap 전단시험을 적용한 자가치료제의 접착성능 평가)

  • 윤성호;박희원;허광수
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.40-46
    • /
    • 2004
  • A single lap shear test was used to investigate the effects of the ratio of a catalyst to a self-healing agent and curing temperature on the bond performance of autonomic polymer composites. DCPD (dicyclopentadiene), ENB (5-ethylidene-2-norbornene), and their mixture were used as self-healing agents and bis(triclohexylphosphine) benzyllidine ruthenium (IV) dichloride Grubbs' catalyst was used as a catalyst. During the experiments, the catalyst ratios of 1.0wt% and 0.5wt% were applied to DCPD, the catalyst ratio of 0.lwt% was applied to ENB, and the catalyst ratio of 0.5wt% was applied to the mixtutes of DPCD and ENB. In addition, the curing temperatures of $25^{\circ}C$, $60{\circ}C$, and $80^{\circ}C$ were considered. According to the results, the higher catalyst ratio and the longer curing time were required to obtain more stabilized bond shear strength of DCPD. ENB with a lower catalyst ratio was cured faster than DCPD. Unlike DCPD, ENB stabilized after a steady fall from its peak as the curing time increased. Moreover, the mixtures of DCPD and ENB revealed similar curing behavior to ENB, but the increase in mixture ratio of ENB to DCPD caused curing process to be faster. Also the increase in curing temperature caused the bond shear strength to be higher and the curing time to be quicker.

Properties of new crack repair materials using organic and inorganic composites (유·무기 복합재료를 이용한 새로운 균열 보수재료의 특성)

  • Ahn, Tae-Ho;Bang, Sin-Young;Kim, Kyoung-Min;Sho, Kwang-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.228-229
    • /
    • 2015
  • In this research, properties of new crack repair materials using organic and inorganic composites (OAI) were investigated under various crack conditions. Especially, this study aims to develop new composites repair materials as needed to follow the crack and its repair method. Crack repair methods such as injection method and surface treatment repair method using self-healing capability for the practical industrial application were examined in comparison with normal crack repair method as a epoxy injection. From these results, it was confirmed that the sealing and injection effects through the cracks from field tests could be improved by OAI.

  • PDF

The Degree of Crystallinity and Electrical Characteristics of Low Density Polyethylene Thin Films Grown by Solution Method (용액법에 의해 성장된 저밀도 폴리에틸렌 박막의 결정화도 및 전기적 특성)

  • Yun, Jung-Jung;Lee, Heon-Yong
    • Korean Journal of Materials Research
    • /
    • v.7 no.10
    • /
    • pp.891-897
    • /
    • 1997
  • 본 논문은 용액법으로 성장시킨 저밀도 폴리에틸렌 박막의 냉각 조건에 따른 결정화도의 관계와 냉각 조건에 따른 전기전도현상, 유전특성 및 절연파괴에 관하 연구로서 박막은 140[$^{\circ}C$]에서 2시간 유지후 냉각 조건을 달리하여 제작하였다. 결정화도는 XRD를 이용하여 측정하였으며 냉각 속도가 빠를수록 결정화도가 감소함을 볼 수 있었다. 전기전도현상은 냉각 조건에 무관하게 저전계에서는 이온전도특성이 나타나고 고전계에서는 공간전하제한전류이론이 지배적이다. 절연파괴전계는 냉각속도가 증가할수록 증가하고 self-healing절연파괴 방법에서는 시험회수가 증가할수록 증가하였다.

  • PDF

Study on Manufacturing Process Variables affecting on Characteristics of Autonomic Microcapsules (자가치료용 마이크로캡슐 특성에 영향을 미치는 제작공정 연구)

  • 윤성호;박희원;소진호;홍순지;이종근
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.169-172
    • /
    • 2003
  • Manufacturing process for autonomic microcapsules was introduced and autonomic microcapsules were manufactured by varying with various manufacturing process variables. Urea-formaldehyde resin was used for the wall of microcapsules and DCPD (dicyclopentadiene) was used for the self-healing agent. The characteristics of these microcapsules was evaluated through a particle size analyaer, an optical microscope, and a TGA. The various manufacturing process variables, such as pH and agitation speed of the emulsified solution, were considered to focus in this study. According to the results, the particle size distributions were affected on the agitation speed of the emulsified solution, and the thermal stability was influenced by pH of the emulsified solution.

  • PDF

Tailoring ECC for Special Attributes: A Review

  • Li, Victor C.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.135-144
    • /
    • 2012
  • This article reviews the tailoring of engineered cementitious composites (ECC), a type of high performance fiber reinforced cementitious composites with a theoretical design basis, for special attributes or functions. The design basis, a set of analytic tools built on micromechanics, provides guidelines for tailoring of fiber, matrix, and fiber/matrix interfaces to attain tensile ductility in ECC. If conditions for controlled multiple cracking are disturbed by the need to introduce ingredients to attain a special attribute or function, micromechanics then serve as a systematic and rational means to efficiently recover composite tensile ductility. Three examples of ECCs with attributes of lightweight, high early strength, and self-healing functions, are used to illustrate these tailoring concepts. The fundamental approach, however, is broadly applicable to a wide variety of ECCs designed for targeted fresh and/or hardened characteristics required for specific applications.

Improvement of Oxidation Resistance by Coating on C/BN Composites

  • Kim, Dong-Pyo;Park, Hee-Dong;Lee, Jae-Do
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.155-159
    • /
    • 1995
  • Borosilicate, $B_2O_3$ and BN derived from liquid precursors have been tested as shielding materials for the long period of oxidation resistance of C/BN composites at $650^{\circ}C$. Borosilicate coating displayed excellent oxidation resistance and low moisture absorbance, while $B_2O_3$ and BN were less effective in elevating the oxidation resistance. The enhancement of the oxidation resistance was explained as self-healing effect by viscous flow of the borosilicate glass over Tg, resulting in the reduction of the exposed carbon fibers in a BN matrix.

  • PDF

Biomaterial development for oral and maxillofacial bone regeneration

  • Sulzer, Lindsay S. Karfeld;Weber, Franz E.
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.5
    • /
    • pp.264-270
    • /
    • 2012
  • Many oral and maxillofacial bone defects are not self-healing. Guided bone regeneration (GBR), which uses a barrier membrane to prevent the soft tissues from invading the defect to enable slower-growing bone cells to penetrate the area, was developed as a therapy in the 1980s. Although there has been some success with GBR in some clinical situations, better treatments are needed. This review discusses the concept of GBR focusing on bioactive membranes that incorporate osteoconductive materials, growth factors and cells for improved oral and maxillofacial bone regeneration.

Fundamental materials research in view of predicting the performance of concrete structures

  • Breugel, K. van
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.1-12
    • /
    • 2006
  • For advanced civil engineering structures a service life of hundred up to hundred fifty and even two hundred years is sometimes required. The prediction of the performance of concrete structures over such a long period requires accurate and reliable predictive models. Most of the presently used, mostly experience based models don't have the quality and reliability that is required for reliable long-term predictions. The models designers are searching for should be based on an accurate description of the relevant degradation mechanisms. The starting point of such models is a realistic description of the microstructure of the concrete. In this presentation the need and the role of fundamental microstructural models for predicting the performance of concrete structures will be presented. An example will be given of a microstructural model with a proven potential for long-term predictions. Besides this also the role of models in general, i.e. in the whole design and execution process of concrete structures, will be dealt with. Finally recent trends in concrete research will be presented, like the research on self-healing cement-bases systems.

  • PDF

Recent Research Trend in Multifunctional Wearable Energy Storage Devices (다기능성 웨어러블 에너지 저장 장치 연구동향)

  • Park, Sangbaek
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.2
    • /
    • pp.23-39
    • /
    • 2020
  • 4차 산업혁명의 초연결/초지능 사회가 현실화 되면서 모든 제품이 배터리에 연결되는 사물배터리(battery of things) 시대가 열리고 있다. 이에 따라 기존의 정형화된 에너지 저장 장치를 넘어 전자기기 각각에 걸맞은 스펙과 기능을 갖는 맞춤형 전지 개발이 화두이다. 특히 구부러지거나 변형될 수 있는 웨어러블 전자기기를 구동하기 위해서는 기계적인 변형에 안정한 에너지 저장 장치가 필요하다. 또한 다양한 기능(투명성, 전기변색, 자가치유형, 친환경 등)을 갖는 지능형 전자기기가 개발됨에 따라, 이와 동등한 기능을 갖는 에너지 저장 장치도 요구되고 있다. 나아가 각각 개발된 웨어러블/다기능성 전자기기와 에너지 저장 장치를 어떻게 통합시킬지에 대한 연구도 활발히 이루어지고 있다. 본 기고문에서는 기계적 안정성, 기존 소자와의 적합성, 나아가 신기능성까지 갖춘 차세대 다기능성 웨어러블 에너지 저장 장치를 소개하고 이를 위한 복합나노구조 합성 및 소자 디자인 전략에 관한 최근 연구 동향을 소개하고자 한다.