• Title/Summary/Keyword: Self-healing materials

Search Result 88, Processing Time 0.031 seconds

An Experimental Study on the Mechanical Healing Properties of Self-Healing Mortar with Solid Capsules Using Crystal Growth Type Inorganic Materials (결정성장형 무기재료 활용 고상 캡슐을 혼합한 자기치유 모르타르의 역학적 치유 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Nam, Eun-Joon;Oh, Sung-Rok;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.581-589
    • /
    • 2020
  • In this paper, a solid capsule was prepared using a crystal growth type inorganic material capable of hydration reaction, the quality and mechanical healing properties of self-healing mortar with solid capsules were evaluated. Solid capsules were mixed 5% by mass of cement. Reloading test results of compressive load, it was found to improve about 20% on average for the natural healing effect of Plain, in the case of the elastic range, the healing rate was about 79% at the 7 days of healing age and 98% at the 28 days of healing age. Reload test results of flexural load, in the case of the elastic range, the healing rate was about 79% at the 7 days of healing age and 98% at the 28 days of healing age. Through these results, it is judged that the healing performance of solid capsules has also an effect on mechanical healing properties such as strength in addition to the durability properties obtained by the permeability test. Since the strength tends to decrease as the solid capsules are mixed, it is considered necessary to compensate.

Effects of Healing Agent on Crack Propagation Behavior in Thermal Barrier Coatings

  • Jeon, Soo-Hyeok;Jung, Sung-Hoon;Jung, Yeon-Gil
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.492-498
    • /
    • 2017
  • A thermal barrier coating (TBC) with self-healing property for cracks was proposed to improve reliability during gas turbine operation, including structural design. Effect of healing agent on crack propagation behavior in TBCs with and without buffer layer was investigated through furnace cyclic test (FCT). Molybdenum disilicide ($MoSi_2$) was used as the healing agent; it was encapsulated using a mixture of tetraethyl orthosilicate and sodium methoxide. Buffer layers with composition ratios of 90 : 10 and 80 : 20 wt%, using yttria stabilized zirconia and $MoSi_2$, respectively, were prepared by air plasma spray process. After generating artificial cracks in TBC samples by using Vickers indentation, FCTs were conducted at $1100^{\circ}C$ for a dwell time of 40 min., followed by natural air cooling for 20 min. at room temperature. The cracks were healed in the buffer layer with the healing agent of $MoSi_2$, and it was found that the thermal reliability of TBC can be enhanced by introducing the buffer layer with healing agent in the top coat.

Evaluation of Crack Self-healing Performance in Centrifugal Molding Concrete by Permeability Test (원심성형 콘크리트의 투수시험을 통한 균열 자기치유 성능평가)

  • Hwang, Chul Sung;Woo, Hae Sik;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.84-89
    • /
    • 2018
  • Recently, study on self-healing materials have been performed to increase the life by repairing the damage of structures themselves, which are difficult to repair or require high maintenance costs. A water permeability test has been widely used for the evaluation of self-healing performance. However, in the self-healing performance test method, the initial crack width of the concrete greatly affects on the self-healing performance but it does not have a consistent standard. Therefore, in this study, the correlation between crack and permeability and that between time and permeability were analyzed based on crack width and permeability. In addition, since the initial crack width measured by optical microscope is not reliable, the value is derived from the Poiseuille flow and the tendency of time-permeability and time-crack width are analyzed.

The Effects of Self-Healing for Ternary Blended Cement in Tap-water and Sea-water (삼성분계 시멘트의 해수와 담수에서의 자기치유 효과)

  • Kim, Tae-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.10-19
    • /
    • 2016
  • The objective of this study is to investigate the self-healing properties of ternary blended cement(TBC) paste made with OPC, GGBFS and FA. The influence of OPC-GGBFS-FA on the self-healing ability of ternary blended cement paste was researched by ultrasonic pulse velocity(UPV) measurement. The TBC paste with GGBFS-FA replacement ratios of 20%, 40% and 60% were prepared having a constant water-cementitious materials ratios os 0.5. The research focuses on behavior after 28days(after loading). Four-point bending tests are used to pre-cracked the prismatic specimens at 28days. For specimens (uncracked and cracked) submerged in tap-water and sea-water until 60days. According to the experimental results, the TBC paste system has self-healing ability increased when the fraction of GGBFS increased. Because GGBFS and FA continues to hydrate after 28days, it is likely that hydrated products from GGBFS and FA may modify microstructures, seal these cracks. From these results, it is clear that the crack in all samples experience self-healing and that this occurs mostly in the first 30days of submerging. Futhermore, most of the healing for both specimens of submerged in sea-water and tap-water occurred during the first 30days. Sea-water submerged specimens healed cracks as fast as those in tap-water. Differences in healing effects of submerged in sea-water and tap-water may be attributed to the presence of specific sea-water ions. Therefore, self-healing effects considered age-effects was more strong effect occurred mostly in the first 30days, and then gradually weaken.

Self-healing Elastomers As Dream Smart Materials (꿈의 스마트 재료로서 자기치유 탄성체)

  • Kim, Il;Shin, Nam-Ho;Jo, Jung-Kyu;Hur, A-Young;Li, Haiqing;Ha, Chang-Sik
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.196-208
    • /
    • 2009
  • Sophisticated polymeric materials with 'responsive' properties are beginning to reach the market. The use of reversible, noncovalent interactions is a recurring design principle for responsive materials. Recently developed hydrogen-bonding units allow this design principle to be taken to its extreme. Supramolecular polymers, where hydrogen bonds are the only force keeping the monomers together, form materials whose (mechanical) properties respond strongly to a change in temperature or solvent. In this review, we describe some examples of hydrogen-bonded supramolecular polymers that can be utilized for self-healing materials. Synthesis of a rubber-like material that can be recycled might not seem exciting. But one that can also repeatedly repair itself at room temperature, without adhesives, really stretches the imagination. Autonomic healing materials respond without external intervention to environmental stimuli in a nonlinear and productive fashion, and have great potential for advanced engineering systems.

An Experimental Study on the Quality and Crack Healing Properties of Self-Healing Mortar Containing Solid Capsules using Crystal Growth Type Inorganic Materials (결정성장형 무기재료 활용 고상 캡슐을 혼합한 자기치유 모르타르의 품질 및 균열 치유 특성에 관한 실험적 연구)

  • Oh, Sung-Rok;Kim, Cheol-Gyu;Nam, Eun-Joon;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.120-128
    • /
    • 2020
  • In this study, solid capsules using crystal growth-type inorganic materials that can be directly mixed with mortar were prepared. Thus, three levels of solid capsules were prepared. The prepared solid capsule was mixed with 3% of the cement mass, was evaluated quality and crack healing properties of the mortar. As a test results of the table flow and air content of the mortar mixed with the solid capsules showed that mix of the solid capsules was no effect on the table flow and air volume. As a test result of the crack healing properties of the mortar mixed with the solid capsule according to water flow test and crack closing test, the initial flow rate was decreased, it was confirmed that the reaction product occurred over time and the cracks were healed.

Combining smart materials for enhancing intelligent systems: initial studies, success cases and research trends

  • Diaz Lantada, A.;Lafont Morgado, P.;Munoz-Guijosa, J.M.;Munoz Sanz, J.L.;Echavarri Otero, J.;Chacon Tanarro, E.;De la Guerra Ochoa, E.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.517-539
    • /
    • 2014
  • The combined use of smart materials, complementing each others' characteristics and resulting in devices with optimised features, is providing new solutions in many industries. The use of ingenious combinations of smart materials has led to improvements in actuation speed and force, signal-to-noise ratio, sensor precision and unique capabilities such as self-sensing self-healing systems and energy autonomy. This may all give rise to a revival for numerous families of smart materials, for which application proposals had already reached a stationary situation. It may also provide the boost needed for the definitive industrial success of many others. This study focuses on reviewing the proposals, preliminary studies and success cases related to combining smart materials to obtain multifunctional, improved systems. It also examines the most outstanding applications and fields for the combined use of these smart materials. We will also discuss related study areas which warrant further research for the development of novel approaches for demanding applications.

Polymerization Behavior of Self-healing Agents for Damage Repair in Composite Materials (복합재 손상보수용 자가치료제의 중합 거동)

  • Oh, Jinoh;Yoon, Sungho;Jang, Seyong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.35-42
    • /
    • 2014
  • Thermal analysis properties and adhesive properties of self-healing agents were evaluated through differential scanning calorimetry, reaction heat measurement, and adhesive shear test. D1E0, D3E1, D1E1, D1E3, and D0E1, depending on the mixing ratio of DCPD and ENB, were considered as self-healing agents. The amount of Grubbs' catalyst, depending on the type of self-healing agents, was varied from 0.1 wt% to 1.5 wt%. In the case of DCPD, the polymerization reaction occurred faster and the stabilized adhesive strength increased as the amount of catalyst increased; however, a large amount of catalyst was required. ENB had excellent reactivity with a small amount of the catalyst; however, high reaction heat was observed at the early stage of polymerization. Thermal analysis properties and adhesive properties of self-healing agents can be controlled by varying a mixing ratio of DCPD and ENB. Among the self-healing agents used for this study, the D3E1 would be one of the most preferable candidates with regard to maximum adhesive strength, reaching time to maximum adhesive strength, stabilized adhesive strength, and reaction heat.

Permeability and strength characteristics of Self-Sealing and Self-Beating materials as landfill liners (매립지 차수재로서 자가치유재의 투수 및 강도특성)

  • 장연수;문준석
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.41-51
    • /
    • 2002
  • Recently, domestic waste landfills are constructed sometimes on seashore area to provide large landfill area. In order to strengthen the foundation of landfills and to prevent the infiltration of leachate through the bottom, many cases of constructing cement hardened liners on seashore clays are found. In these cases, it is possible to have cracks in the hardened liners due to settlement with waste load since the stiffness of the hardened liner Is greater than that of clay liners. In this study, the capability of Self-Sealing and Self-Healing (SSSH) liner made with a seashore clay in the metropolitan landfill to prevent the percolation of water and leachate is examined using flexible-wall permeameter test and using uniaxial compression test. Applicability of SSSH to weathered granitic soil is also examined for self-sealing capabilities. The result of Flexible permeameter test for SSSH with the seashore clay showed that permeability obtained was lower than permeability criteria of Korean waste management law. The permeability and strength characteristics of SSSH with granitic soil and bentonite showed better results than with the seashore clay.