Browse > Article
http://dx.doi.org/10.12989/sss.2014.14.4.517

Combining smart materials for enhancing intelligent systems: initial studies, success cases and research trends  

Diaz Lantada, A. (Machine Engineering Research Group - Higher Technical School of Industrial Engineering Universidad Politecnica de Madrid)
Lafont Morgado, P. (Machine Engineering Research Group - Higher Technical School of Industrial Engineering Universidad Politecnica de Madrid)
Munoz-Guijosa, J.M. (Machine Engineering Research Group - Higher Technical School of Industrial Engineering Universidad Politecnica de Madrid)
Munoz Sanz, J.L. (Machine Engineering Research Group - Higher Technical School of Industrial Engineering Universidad Politecnica de Madrid)
Echavarri Otero, J. (Machine Engineering Research Group - Higher Technical School of Industrial Engineering Universidad Politecnica de Madrid)
Chacon Tanarro, E. (Machine Engineering Research Group - Higher Technical School of Industrial Engineering Universidad Politecnica de Madrid)
De la Guerra Ochoa, E. (Machine Engineering Research Group - Higher Technical School of Industrial Engineering Universidad Politecnica de Madrid)
Publication Information
Smart Structures and Systems / v.14, no.4, 2014 , pp. 517-539 More about this Journal
Abstract
The combined use of smart materials, complementing each others' characteristics and resulting in devices with optimised features, is providing new solutions in many industries. The use of ingenious combinations of smart materials has led to improvements in actuation speed and force, signal-to-noise ratio, sensor precision and unique capabilities such as self-sensing self-healing systems and energy autonomy. This may all give rise to a revival for numerous families of smart materials, for which application proposals had already reached a stationary situation. It may also provide the boost needed for the definitive industrial success of many others. This study focuses on reviewing the proposals, preliminary studies and success cases related to combining smart materials to obtain multifunctional, improved systems. It also examines the most outstanding applications and fields for the combined use of these smart materials. We will also discuss related study areas which warrant further research for the development of novel approaches for demanding applications.
Keywords
smart materials; intelligent systems; sensors and actuators; energy harvesting; self sensing materials and structures; self-healing materials and structures; autonomous systems;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Soong, R.K., Bachand, G.D., Neves, H.P., Olkhovets, A.G., Craighead, H.G. and Montemagno, C.D. (2000), Science, 290(5496), 1555-1558.   DOI
2 Winzek, B., Sterzl, T., Rumpf, H. and Quandt, E. (2003)m "Composites of different shape memory alloys and polymers for complex actuator motions", J. de Physique, 4(112), 1163-1168.
3 Wilson, T., Small IV, W., William, B.J., Bearinger, J.P. and Maitland, D.J. (2005), "Shape memory polymer therapeutic devices for stroke", Smart Medical and Biomedical Sensor Technology III. Proceedings of the SPIE, 6007, 157-164.
4 Warwick, K. (2008), "Outthinking and enhancing biological brains", Proceedings of the International Conference on Biomedical Electronics and Devices Biostec 2008-Biodevices, Keynote Lecture.
5 Ulrich, K. and Eppinger, S. (2007), Product design and development, Mc-Graw Hill / Irwin 4th Ed., New York, USA.
6 Wakasa, Y., Watanabe, Y., Yoshida, A., Tanaka, T. and Ashaki, T. (2008), "Response improvement of shape memory alloy actuators with Peltier elements", Proceedings of the 2008 IEEE International Conference on Mechatronics and Automation.
7 Sanchez, A.M., Prieto, R., Laso, M. and Riesgo, T. (2008), "A piezoelectric minirheometer for measuring the viscosity of polymer microsamples", IEEE T. Ind. Electron., 55(1), 427-435.   DOI
8 Seesing, D. (2010), Symbiosis concept vehicle, Energy Efficient Alliance-Pilkington Vehicle Design Award.
9 Sokolov, A., Apodaca, M.M., Grzybowski, B.A. and Aranson, I.S. (2009), "Swimming bacteria power microscopic gears", PNAS, 107(3), 969-974.
10 Song, G., Gu, H., Mo, Y.L., Hsu, T.T.C. and Dhonde, H. (2007), "Concrete structural health monitoring using piezoceramic transducers", Smart Mater. Struct., 16(4), 959-968.   DOI   ScienceOn
11 Song, G., Gu, H. and Mo, Y.L. (2008), "Smart aggregates: Multi-functional sensors for concrete structures-A tutorial and a review", Smart Mater. Struct., 17(3), 1-17.
12 Sterzl, T., Winzek, B., Quandt, E., Mennicken, M., Nagelsdiek, R., Keul, H. and Hoecker, H. (2003), "Bistable shape memory thin film actuators", Proceedings of the SPIE-Conference on Smart Structures and Materials 2003: Active Materials-Behavior and Mechanics, 5053(101).
13 Takashima, K., Rossitera, J. and Mukaia, T. (2010), "Mc Kibben artificial muscle using shape-memory polymer", Sensor. Actuat. A-Phys., 164, 116-124.   DOI
14 Tschochner, H. (1957), Konstruieren und Gestalten, Girardet Essen, Germany.
15 Razumiene, J., Gureviciene, V., Barkauskas, J., Bukauskas, V. and Setkus, A. (2009), "Novel combined template for amperometric biosensors with changeable selectivity", Proceedings of the 2nd International Conference on Biomedical Electronics and Devices-Biodevices 2009, Porto, Portugal.
16 Ribeiro, C., Gomes, P.J., Ribeiro, P.A. and Raposo, M. (2009), "Polymeric film sensors based on PAH-PAZO ionic self-assembled multi-nanolayers", Proceedings of the 2nd International Conference on Biomedical Electronics and Devices-Biodevices 2009, Porto, Portugal.
17 Rocco, M.C. and Bainbridge, W.S. (2002), Converging technologies for improving human performance: Nanotechnology, biotechnology, information technology and cognitive science, NSF/DOC sponsored report.
18 Porfiri, M. (2009), "An electromechanical model for sensing and actuation of ionic polymer metal composites", Smart Mater. Struct., 18, 015056.
19 Roozenburg, N. and Eeckels, J. (1995), Product design: fundamentals and methods, John Wiley & Sons New York, USA.
20 Peairs, D.M., Park, G. and Inman, D.J. (2004), "Practical issues of activating self-repairing bolted joints", Smart Mater. Struct., 13(6), 1414-1423.   DOI
21 Luo, Y., Takagi, T., Maruyama, S. and Yamada, M. (2000), "A shape memory alloy actuator using Peltier modules and R-phase transition", J. Intel. Mat. Syst. Str., 12, 721-728.
22 Park, G., Muntges, D.E. and Inman, D.J. (2001), Self-monitoring and self-healing jointed structures, Center for Intelligent Material Systems and Structures-Virginia Polytechnic Institute and State University.
23 Park, G., Ruggiero, E. and Inman, D.J. (2002), "Dynamic testing of inflatable structures using smart materials", Smart Mater. Struct., 11(1), 147-155.   DOI   ScienceOn
24 Olmi, C., Song, G. and Mo, Y.L. (2007), "An innovative and multi-functional smart vibration platform", Smart Mater. Struct., 16(4), 1302-1309.   DOI
25 Mavroidis, C., Bar-Cohen, Y. and Bouzit, M. (2006), "Haptic interfaces using electrorheological fluids", in Bar-Cohen Y, "Electroactive polymer (EAP) actuators as artificial muscles: Reality, potential and challenges", SPIE Press, 2nd Ed., Washington.
26 Mide Technology, "Volture TM Vibration energy harvester & Volture TM Solar energy harvester" (www.mide.com/products/volture)
27 Niemann, G. (1950, 1962, 1975), Maschinenelemente, Springer Berlin, Germany.
28 Mohr, R., Kartz, K., Wiegel, T., Lucka-Gabor, M., Moneke, M. and Lendlein, A. (2006), "Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers", Proceedings of the National Academy of Science, 103, 3540-3545.   DOI
29 Montemango, C., Bachand, G.D., Stelick, S. and Bachand, M. (1999), "Constructing biological motor powered nanomechanical devices", Nanotechnology, 10, 225-231.   DOI   ScienceOn
30 Muller, C.W., Pfeifer, R., El-Kashef, T., Hurschler, C., Herzog, D., Oszwald, M., Haasper, C., Krettek, C. and Gosling, T. (2010), "Electromagnetic induction heating of an orthopaedic nickel-titanium shape memory device", J. Orthop. Res., 28(12), 1671-1676.   DOI
31 Liu, Y., Lu, H., Lan, X. and Leng, J.S. (2009), "Review of electro-activate shape-memory polymer composite", Compos. Sci. Technol., 69(13), 2064-2068.   DOI
32 Lyshevski, L.E. (2003), "Nanoactuators: Novel synchronous reluctance nanomachines", IEEE Nano 2003, 2, 295-298.
33 Matousek, R. (1957), Konstruktionslehren des allgemeinen Maschinenbaus, Springer Berlin, Germany.
34 Abadie, J., Chaillet, N. and Lexcellent, C. (2002), "An integrated shape memory alloy micro-actuator controlled by thermoelectric effect", Mechatronics, 14(7), 757-775.
35 Anton, S.R., Erturk, A. and Inman, D.J. (2010), "Multifunctional self-charging structures using piezoceramics and thin-film batteries", Smart Mater. Struct., 19, 115021.   DOI
36 Anton, S.R. and Inman, D.J. (Advisor) (2008), Baseline free and self-powered structural health monitoring, Virginia Polytechnic State University.
37 Asby, M.F. (1999), Materials selection in mechanical design, Butterworth-Heinemann Burlington, Massachusetts.
38 Anton, S.R. and Sodano, H.R. (2007), "A review of power harvesting using piezoelectric materials", Smart Mater. Struct., 16(3), doi:10.1088/0964-1726/16/3/R01.   DOI   ScienceOn
39 Bautista Paz, E., Ceccarelli, M., Echavarri Otero, J. and Munoz Sanz, J.L. (2010), "A brief illustrated History of machines and mechanisms", History Mechanism and Machine Sci., 10, Springer.
40 Li, S. and Lipson, H. (2009), "Vertical-stalk flapping-leaf generator for parallel wind energy harvesting", Proceedings of the ASME/AIAA Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2009.
41 Bachand, G.D. and Montemagno, C. (2000), "Constructing organic/inorganic NEMS devices powered by biomolecular motors", Biomed. Microdevices, 2(3), 179-184.   DOI
42 Bar-Cohen, Y. (2004), Biologically inspired intelligent robots, SPIE Press.
43 Bar-Cohen, Y. (2006), Electroactive polymer (EAP) actuators as artificial muscles: Reality, potential and challenges, SPIE Press, 2nd Ed., Washington.
44 Bellin, I., Kelch, S., Langer, R. and Lendlein, A. (2006), "Polymeric triple-shape materials", Proceedings of the National Academy of Science, 103, 18043-18047.   DOI
45 Bian, L., Wen, Y., Li, P., Gao, Q. and Zheng, M. (2009), "Magnetoelectric transducer with high quality factor for wireless power receiving", Sensor Actuat. A-Phys., 150(2), 207-211.   DOI
46 Cerutti, S. (2008), "Multivariate, multiorgan and multiscale integration of information in biomedical signal processing", Proceedings of the International Conference on Biomedical Electronics and Devices Biostec 2008-Biodevices, Keynote Lecture.
47 Bourouina, T., Lebrasseur, E., Reyne, G., Fujita, H., Ludwig, A., Quandt, E., Muro, H., Oki, T. and Asaoka, A. (2002), "Integration of two degree of freedom magnetostrictive actuation and piezoresistive detection: Application to a two dimensional optical scanner", J. Microelectromech. S., 11(4), 355-361.   DOI
48 Castro, H.F., Lanzeros Mendez, S. and Rocha, J.G. (2006) "Separation of the pyro-and piezoelectric response of electroactive polymers for sensor applications", Mater. Sci. Forum, 514-516, 202-206.   DOI
49 Diaz Lantada, A. (2012), Handbook on active materials for medical devices: Advances and applications, PAN Stanford Publishing.
50 Chang, C., Ho, M., Song, G., Mo, Y.L. and Li, H. (2009), "Feasibility study of self-heating concrete utilizing carbon nanofiber heating elements", Smart Mater. Struct., 18(12), doi:10.1088/0964-1726/18/12/127001.   DOI
51 Colloza, A. (2007), Fly like a bird, IEEE Spectrum, Flapping wings could revolutionize aircraft design.
52 Diaz Lantada, A. and Lafont, P. (Advisor) (2009), Methodology for the structured development of medical devices based on smart polymers as sensors and actuators, PhD Thesis, Universidad Politecnica de Madrid.
53 Diaz Lantada, A., Lafont Morgado, P., Del Olmo, H.H., Echavari, J., Lorenzo-Yustos, H., Munoz-Guijosa, J.M., Munoz Garcia, J. and Munoz Sanz, J.L. (2009), "Modelling and trials of pyroelectric sensors for improving its applications for biodevices", Proceedings of the International Conference on Biomedical Electronics and Devices-Biodevices 2009.
54 Duenas, T., Sehrbrock, A. Lohndorf, M., Ludwig, A., Grunberg, P. and Quandt, E. (2002), "Micro-sensor coupling magnetostriction and magnetoresistive phenomena", J. Magnetism Magnetic Mater., 242-245, 1132-1135.   DOI
55 Diaz Lantada, A., Lafont Morgado, P., Munoz Garcia, J., Munoz Sanz, J.L., Munoz-Guijosa, J.M. and Echavarri Otero, J. (2010), "Intelligent structures based on the improved activation of shape memory polymers using Peltier cells", Smart Mater. Struct., 19(5), doi:10.1088/0964-1726/19/5/055022.   DOI
56 Dosch, J.J., Inman, D.J. and Garcia, E. (1992), "A self-sensing piezoelectric actuator for collocated control", J. Intel. Mat. Syst. Str., 3(1), 166-185.   DOI
57 Franzke, L. (2013), Touch responsive electroluminescent loudspeaker, Materiability Research Network (http://materiability.com).
58 Dunsch, R. (2007), Models for piezoelectric sensor-actuator systems, PhD Thesis, EPFL.
59 European Commission of Energy (2005), "Eco-design of energy-using product-Eco-design EU Directive".
60 Gao, X.Y. and Huang, W.M. (2006), "Shape memory motor directly powered by solar energy for space missions", Proceedings of the 2006 IEEE Conference on Mechatronics and Automation.
61 Gao, D., Sturm, M. and Mo, Y.L. (2009), "Electrical resistance of carbon-nano fiber concrete", Smart Mater. Struct., 18, 095039.   DOI
62 Ghosh, S.K. (2009), Self-healing materials: Fundamentals, design strategies and applications, Wiley-VCH Verlag GmbH & Co., Weinheim.
63 Gibbs, M.R.J. (2005), "Applications of magmems", J. Magnetism Magnetic Mater., 290-291, 1298-1303, Proceedings of the Joint European Magnetic Symposia (JEMS' 04).   DOI
64 Guyomar, D. and Lallart, M. (2009), "Mechanical to electrical energy conversion enhancement and self-powered wireless applications", Proceedings of the IV ECCOMAS Thematic Conference on Smart Materials and Structures Porto, Portugal.
65 Gu, H., Song, G., Dhonde, H., Mo, Y.L. and Yan, S. (2006), "Concrete early age strength monitoring using embedded piezoelectric transducers", Smart Mater. Struct., 15, 1837-1845.   DOI   ScienceOn
66 Guemes, A. (2006), "Structural health monitoring", Proceedings of the 3rd European Workshop-DEStech Publications Inc., Lancaster, Pennsylvania.
67 Hassan, M.R., Scarpa, F. and Mohamed, N.A. (2009), "In-plane tensile behavior of shape memory alloy honeycombs with positive and negative Poisson's ratio", J. Intel. Mat. Syst. Str., 20(8), 897-905.   DOI
68 Hafez, M. (2006), Polymer based actuators as artificial muscles, FSRM Training in Microsystems Course, Teaching Resources, Zurich.
69 Han, B., Yu, X. and Kwon, E. (2009), "A self-sensing carbon nanotube/cement composite for traffic monitoring", Nanotechnology, 20(44), doi:10.1088/0957-4484/20/44/445501.   DOI
70 Hiroki, G., Mami, T., Kentaro, H., Jiang, Z., Hidetoshi, M., Yoshikatsy, T., Seiichi, O. and Seiji, C. (1998), "Urethral valve using shape memory alloy actuators. Development of induction-heating system", Nippon Kikai Gakkai Robotikusu. Mekatronikusu Koenkai Koen Ronbunshu, 2AII3.3(1)-2AII3.3(4).
71 Huefner, S. (2006), "Nanobiosensors" (http://www.chem.usu.edu).
72 Hull, P.V., Canfield, S.L. and Carrington, C. (2004) "A radiant energy-powered shape memory alloy actuator", Mechatronics, 14(7), 737-859.   DOI
73 Kesselring, F. (1954), Technische Kompositionslehre, Springer Berlin, Germany.
74 Ihn, J.B. and Chang, F.K. (2008), "Pitch-catch active sensing methods in structural health monitoring for aircraft structures", Struct.Health Monit., 7(5), 5-19.   DOI   ScienceOn
75 Jacot, A.D., Ruggeri, R.T. and Clingman, D.J. (2000), Shape memory alloy device and control method, The Boeing Company, Patent Document, US 6499952.
76 Jacot, A.D. and Clingman, D.J. (2000), "Shape memory alloy consortium and demonstration", Proceedings of the 6th SPIE Smart Structures and Materials Symposium.
77 Janocha, H. and Kuhnen, K. (2009), "Solid-state actuators with inherent sensory capabilities", Proceedings of the IV ECCOMAS Thematic Conference on Smart Materials and Structures, SMART' 09 Porto, Portugal.
78 Kaiser, W. and Konig, W. (2006), Geschichte des Ingenieurs. Ein Beruf in sechs Jahrtausenden, Carl Hanser Verlag Munchen, Germany.
79 Kesselring, F. (1951), Bewertung von Konstruktionen, VDI Verlag Dusseldorf, Germany.
80 Lelieveld, C.M.J.L. (2013), Smart materials for the realization of an adaptive building component, Ph.D. doctoral Thesis, Delft University of Technology.
81 Lelieveld, C.M.J.L. and Jansen, K.M.B. (2013), "Design and thermal testing of smart composite structure for architecture applications", Proceedings of the 6th ECCOMAS Conference on Smart Structures and Materials.
82 Lelieveld, C.M.J.L. and Voorbij, A.I.M. (2008), "Dynamic material application for architectural purposes", Adv. Science Technol., 56, 595-600.   DOI
83 Leng, J.S., Lu, H., Liu, Y. and Du, S.Y. (2007), "Electro-active shape memory polymer filled with nanocarbon particles and short carbon fibers", Appl. Phys. Lett., 91, 144105.   DOI   ScienceOn
84 Leng, J.S. (2007), "Electrical conductivity of shape memory polymer embedded with micro Ni chains", Appl. Phys. Lett., 91, 014104.   DOI
85 Leng, J.S., Huang, W.M., Lan, X., Liu, Y.J., Liu, N., Phee, S.Y. and Du, S.Y. (2008), "Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon black composite", Appl. Phys. Lett., 92(20), 206101.   DOI
86 Leng, J.S., Lan, X., Liu, Y. and Du, S.Y. (2009), "Electroactive thermoset shape memory polymer nanocomposite filled with nanocarbon powders", Smart Mater. Struct., 19, 074003.
87 Li, P., Gu, H., Song, G., Zheng, R. and Mo, Y.L. (2010), "Concrete structural health monitoring using piezoceramic-based wireless sensor networks", Smart Struct. Syst., 6(5), 731-748.   DOI
88 Zupan, M., Asby, M.F., Fleck, N.A. (2002), "Actuator classification and selection-The development of a database", Adv. Eng. Mater., 4(12), 933-940.   DOI
89 Li, S., Yuan, J., and Lipson, H. (2011), "Ambient wind energy harvesting using cross-flow fluttering", J. Appl. Phys., 109(2), 026104.   DOI
90 Song, G., Mo, Y.L., Otero, K. and Gu, H. (2006), "Health monitoring and rehabilitation of a concrete structure using intelligent materials", Smart Mater. Struct., 15(2), 309-314.   DOI
91 Frecker, M. (2003), "Recent advances in optimization of smart structures and actuators", J. Intel. Mat. Syst. Str., 14(4-5), 207-216.   DOI