• Title/Summary/Keyword: Self-driving cars

Search Result 67, Processing Time 0.035 seconds

Technological Development Trends for Self-driving Cars (자율주행 자동차 기술개발 동향)

  • Kim, Min-joon;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.246-248
    • /
    • 2017
  • Self-driving cars have three main functions. The first recognizes the surrounding environment, judge the risk, and lastly plans the drive path. Therefore, the driving operation is minimized. And it refers to a human friendly car capable of safe driving on its own. The reason for the need for self-driving car was to reduce traffic jams on limited roads and to reduce carbon dioxide emissions. Driving ahead of these self-driving car businesses can be expected to attract and expand the existing business and expand the new business and create new business opportunities for ICT firms. It is urgent for the concerned agencies to establish legal and institutional basis for self-driving cars. By doing so, new services could be provided to consumers. Therefore, this paper introduces the technological development trends for self-driving cars.

  • PDF

The Propose a Legislation Bill to Apply Autonomous Cars and the Study for Status of Legal and Political Issues (제4차 산업혁명 시대의 자율주행자동차 상용화를 위한 안정적 법적 기반을 위한 법정책적 연구 - 자율주행자동차 특별법 제정(안)을 중심으로 -)

  • Kang, Sun Joon;Won, Yoo Hyung;Kim, Min Ji
    • Journal of Korea Technology Innovation Society
    • /
    • v.21 no.1
    • /
    • pp.151-200
    • /
    • 2018
  • At the Davos Forum in 2016, the Fourth Industrial Revolution, a reference to cloud Schwab, is dramatically changing our lives, and at its height, self-driving cars are emerging as the talk of the day. But there are still many hurdles to overcome before the nation can successfully introduce and establish self-driving cars. In particular, it is necessary to change the paradigm of the legal system centered on human beings to one that includes artificial intelligence. The stable operation of the self-driving car era requires drastic changes to the people-centric legislation system. That is, it is necessary to collect information on the total number of drivers of self-driving cars (what is available), general vehicles on general roads, civil and criminal liability issues in the event of traffic accidents, and collection of insurance problems concerning autonomous driving vehicles. In this study, a separate bill was proposed to address the various legal issues arising from the operation of self-driving cars from a legislative perspective by considering the domestic laws related to road transport, the current state of legislation on foreign soil and legal issues related to self-driving cars.

Parking Location Control Algorithm for Self-Driving Cars (자율주행 자동차를 위한 주차 위치 제어 알고리즘)

  • Tariq, Shahroz;Park, Heemin
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.12
    • /
    • pp.654-662
    • /
    • 2016
  • With the advent of autonomous cars, we explored the problems which will soon arise while parking in car parks. These include structure of parking lot suitable for autonomous cars, finding the closest parking slot available, and navigation to the location. We provide an initial solution, wherein we use a central server and the graph of the parking lot to guide cars to the closest parking slots available. Our experiments have shown that the proposed method is effective for the controlled parking for self-driving cars.

Adversarial Wall: Physical Adversarial Attack on Cityscape Pretrained Segmentation Model (도시 환경에서의 이미지 분할 모델 대상 적대적 물리 공격 기법)

  • Suryanto, Naufal;Larasati, Harashta Tatimma;Kim, Yongsu;Kim, Howon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.402-404
    • /
    • 2022
  • Recent research has shown that deep learning models are vulnerable to adversarial attacks not only in the digital but also in the physical domain. This becomes very critical for applications that have a very high safety concern, such as self-driving cars. In this study, we propose a physical adversarial attack technique for one of the common tasks in self-driving cars, namely segmentation of the urban scene. Our method can create a texture on a wall so that it can be misclassified as a road. The demonstration of the technique on a state-of-the-art cityscape pretrained model shows a fairly high success rate, which should raise awareness of more potential attacks in self-driving cars.

Neural Network and Cloud Computing for Predicting ECG Waves from PPG Readings

  • Kosasih, David Ishak;Lee, Byung-Gook;Lim, Hyotaek
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.11-20
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

The Intelligent Blockchain for the Protection of Smart Automobile Hacking

  • Kim, Seong-Kyu;Jang, Eun-Sill
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

Popularization of Autonomous Vehicles and Arbitrability of Defects in Manufacturing Products (자율주행차의 대중화와 제조물하자에 관한 중재가능성)

  • Kim, Eun-Bin;Ha, Choong-Lyong;Kim, Eung-Kyu
    • Journal of Arbitration Studies
    • /
    • v.31 no.4
    • /
    • pp.119-136
    • /
    • 2021
  • Due to the restriction of movement caused by the Corona epidemic and the expansion of the "big face" through human distance, the "unmanned system" based on artificial intelligence and the Internet of Things has been widely used in modern life. "Self-driving," one of the transportation systems based on artificial technology, has taken the initiative in the transportation system as the spread of Corona has begun. Self-driving technology eliminates unnecessary contact and saves time and manpower, which can significantly impact current and future transportation. Accidents may occur, however, due to the performance of self-driving technology during transportation albeit the U.S. allows ordinary people to drive automatically through experimental operations, and the product liability law will resolve the dispute. Self-driving has become popular in the U.S. after the experimental stage, and in the event of a self-driving accident, product liability should be applied to protect drivers from complicated self-driving disputes. The purpose of this paper is to investigate whether disputes caused by defects in ordinary cars can be resolved through arbitration through U.S. precedents and to investigate whether disputes caused by defects in autonomous cars can be arbitrated.

Localization of Mobile Users with the Improved Kalman Filter Algorithm using Smart Traffic Lights in Self-driving Environments

  • Jung, Ju-Ho;Song, Jung-Eun;Ahn, Jun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.67-72
    • /
    • 2019
  • The self-driving cars identify appropriate navigation paths and obstacles to arrive at their destinations without human control. The autonomous cars are capable of sensing driving environments to improve driver and pedestrian safety by sharing with neighbor traffic infrastructure. In this paper, we have focused on pedestrian protection and have designed an improved localization algorithm to track mobile users on roads by interacting with smart traffic lights in vehicle environments. We developed smart traffic lights with the RSSI sensor and built the proposed method by improving the Kalman filter algorithm to localize mobile users accurately. We successfully evaluated the proposed algorithm to improve the mobile user localization with deployed five smart traffic lights.

A Basic Study on the Route of Shared Self-driving Cars by Type of Transportation Disability person (교통약자 유형별 공유형 자율주행 자동차의 이동경로에 대한 기초연구)

  • Kim, Seon Ju;Kim, Keun Wook;Jang, Won Jun;Jeong, Won Woong;Min, Hyeon Kee
    • The Journal of Information Systems
    • /
    • v.31 no.3
    • /
    • pp.47-65
    • /
    • 2022
  • Purpose With the recent development of Big Data and Artificial Intelligence technology, self-driving technology has developed into three stages (partial self-driving) or four stages (conditional self-driving), it is expected to bring a new paradigm to transportation in the city. Although many researchers are researching related technologies, there is no research on self-driving for disabled persons. In this study, the basic research was conducted based on the assumption that the shared self-driving car used by the disabled person is similar to the special transportation currently driving. Design In this study, data analysis and machine learning techniques were utilized to analyze the mobility patterns of disabled persons by type and to search for leading factors affecting the traffic volume of special transportation. Findings The study found that external physical disorders and developmental disorders often visit general welfare centers, internal organ disorders often visit general hospitals, and the elderly and mental disorders have various destinations. In addition, machine learning analysis showed that the main transportation routes for the disabled person use arterial roads and auxiliary arterial roads and that the ratio of building usage-related variables affecting the use of special transportation for a disabled person is high. In addition, the distance to the subway and bus stops was also mentioned as a meaningful variable. Based on these analysis results, it is expected that the necessary infrastructure for shared self-driving cars for disability person traffic will be used as meaningful research data in the future.

Commercial and In-house Simulator Development Trend for Electromagnetic Analysis of Autonomous Driving Environments (자율주행 환경의 전자기 해석을 위한 상용 및 자체 시뮬레이터 개발 동향)

  • Park, Woobin;Kim, Moonseong;Lee, Woochan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.4
    • /
    • pp.31-42
    • /
    • 2021
  • In the modern era, radio wave analysis is necessary for various fields of engineering, and interpretation of this is also indispensable. Self-driving cars need multiple different electronic components, and thus accurate and fast electromagnetic simulator for this kind of complex radio environment is required for self-driving simulations. Accordingly, the demand for self-driving simulators as well as existing electromagnetic analysis software has increased. This paper briefly describes the characteristics of numerical analysis techniques for electromagnetic analysis, self-driving simulation software, and conventional electromagnetic simulation software and also summarizes the characteristics of each software. Finally, the verification of the result from in-house code compared to HFSS is demonstrated.