• Title/Summary/Keyword: Self-driving Car

Search Result 77, Processing Time 0.021 seconds

A Pilot Study on Self-driving Racing Car Control Model (자율주행 레이싱카 제어 모델에 관한 예비연구)

  • Lee, Youngchan;Yoon, Yebin;Park, Bumjin;Kim, Ian;Lee, Gyubin;Lee, Seunghyun;Ham, Sojin;Moon, Hee Chang;You, Wonsang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.371-374
    • /
    • 2021
  • 자율주행 기술이 급속도로 발전하고 있지만, 자율주행 레이싱 기술과 관련 산업은 전세계적으로 아직 걸음마 수준이다. 본 연구팀은 국내 자율주행차 대표기업인 (주)언맨드솔루션에서 지원하는 플랫폼을 사용하여 자율주행 레이싱 제어 모델 프레임워크를 설계하고 기초 실험을 진행하였다. 제안된 자율주행 레이싱 제어 모델은 GPS 신호처리부, LiDAR 신호처리부, 영상처리부, 차량제어부, 추월/회피 제어부, 컨트롤러 통신부 등으로 구성된다. 실험을 통해 각 구성요소에 대한 기본 성능을 검증하였고, 레이싱에 최적화된 인공지능(AI) 기반 추월/회피 제어 알고리즘 개발을 위한 중요한 토대를 마련하였다. 본 연구를 바탕으로 2021년 11월에 국내 최초로 개최되는 세계 AI 로보카레이스 대회에 출전하여 제안된 자율주행 레이싱 제어 모델 프레임워크의 성능을 검증할 계획이다.

A Study on Artificial Intelligence Ethics Perceptions of University Students by Text Mining (텍스트 마이닝으로 살펴본 대학생들의 인공지능 윤리 인식 연구)

  • Yoo, Sujin;Jang, YunJae
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.947-960
    • /
    • 2021
  • In this study, we examine the AI ethics perception of university students to explore the direction of AI ethics education. For this, 83 students wrote their thoughts about 5 discussion topics on online bulletin board. We analyzed it using language networks, one of the text mining techniques. As a result, 62.5% of students spoke the future of the AI society positively. Second, if there is a self-driving car accident, 39.2% of students thought it is the vehicle owner's responsibility at the current level of autonomous driving. Third, invasion of privacy, abuse of technology, and unbalanced information acquisition were cited as dysfunctions of the development of AI. It was mentioned that ethical education for both AI users and developers is required as a way to minimize malfunctions, and institutional preparations should be carried out in parallel. Fourth, only 19.2% of students showed a positive opinion about a society where face recognition technology is universal. Finally, there was a common opinion that when collecting data including personal information, only the part with the consent should be used. Regarding the use of AI without moral standards, they emphasized the ethical literacy of both users and developers. This study is meaningful in that it provides information necessary to design the contents of artificial intelligence ethics education in liberal arts education.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

Who Should Live? Autonomous Vehicles and Moral Decision-Making (자율주행차와 윤리적 의사결정: 누가 사는 것이 더 합당한가?)

  • Shin, Hong Im
    • Science of Emotion and Sensibility
    • /
    • v.22 no.4
    • /
    • pp.15-30
    • /
    • 2019
  • The reduction of traffic accidents is a primary potential benefit of autonomous vehicles (AVs). However, the prevalence of AVs also arouses a key question: to what extent should a human wrest control back from AVs? Specifically, in an unavoidable situation of emergency, should an AV be able to decide between the safety of its own passengers and endangered pedestrians? Should AV programming include well-accepted decision rules about actionsto take in hypothetical situations? The current study (N = 103) examined individual/situational variables that could perform critical decision-making roles in AV related traffic accidents. The individual variable of attitudes toward AVs was assessed using the Self-driving Car Acceptance Scale. To investigate situational influences on decisional processes, the study's participants were assigned to one of two groups: the achievement value was activated in one group and the benevolence value was triggered in the other through the use of a sentence completion task. Thereafter, participants were required to indicate who should be protected from injury: the passengers of the concerned AV, or endangered pedestrians. Participants were also asked to record the extent to which they intended to buy an AV programmed to decide in favor of the greater good according to Utilitarian principles. The results suggested that participants in the "achievement value: driver perspective" groupexpressed the lowest willingness to sacrifice themselves to save several pedestrians in an unavoidable traffic accident. This group of participants was also the most reluctant to buy an AV programmed with utilitarian rules, even though there were significant positive relationships between members' acceptance of AVs and their expressed intention to purchase one. These findings highlight the role of the decisional processes involved in the "achievement value" pertaining to AVs. The paper finally records the limitations of the present study and suggests directions for future research.

Exposure Assessment of Particulate Matter among Door-to-door Deliverers Using GPS Devices (GPS를 이용한 택배서비스업 근로자의 미세먼지 노출 평가)

  • Lee, Ga Hyun;Kim, Seung Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.1
    • /
    • pp.13-22
    • /
    • 2017
  • Objectives: The objective of this study was to evaluate the exposure levels of door-to-door deliverers to fine particulate matter (PM2.5). Another objective was to confirm the general working patterns of door-to-door deliverers via survey. Methods: In the city of Daegu, ten door-to-door deliverers who wished to join the study were recruited. The general working characteristics of door-to-door deliverers were surveyed using self-reported questionnaires. In the cabin of each car driven by a deliverer, a real-time PM2.5 sampler (Sidepak, Model AM510, TSI Inc., MN, USA) and a GPS device (GPS 741, Ascen, Korea) were installed. Each deliverer was monitored for four days per week so that each day could be monitored at least four times. Results: A total of 40 measurements of PM2.5 concentrations were taken during delivery of parcels. The average exposure levels of door-to-door deliverers to PM2.5 was $44.62{\mu}g/m^3$ ($7-9443{\mu}g/m^3$. Exposure levels to PM2.5 according to the day of the week and coverage areas were not significantly different (p>0.05). Door-to-door deliverers using trucks with older diesel engines manufactured before 2006 had significantly higher exposure levels to PM2.5 than in the case of trucks with diesel engines manufactured after 2006 (p<0.05). Many of the door-to-door deliverers reported the status of having windows open during the delivery task. During delivery services, the working hours spent in residential areas were higher than on roadsides, but exposure levels to PM2.5 in residential areas and on roadsides were $46.17{\mu}g/m^3$ and $49.90{\mu}g/m^3$, respectively. Real-time PM2.5 exposure levels were significantly different between roadways and residential areas (p<0.001). Conclusions: PM2.5 exposure levels of door-to-door deliverers were found to be affected by higher vehicle emissions from the roadsides near their vehicle during deliveries and while driving to other locations compared to by PM2.5 from the diesel engines of their own trucks. Particle concentrations from roadsides and emissions from nearby vehicles through open windows were the main source of PM2.5.

Important Facility Guard System Using Edge Computing for LiDAR (LiDAR용 엣지 컴퓨팅을 활용한 중요시설 경계 시스템)

  • Jo, Eun-Kyung;Lee, Eun-Seok;Shin, Byeong-Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.345-352
    • /
    • 2022
  • Recent LiDAR(Light Detection And Ranging) sensor is used for scanning object around in real-time. This sensor can detect movement of the object and how it has changed. As the production cost of the sensors has been decreased, LiDAR begins to be used for various industries such as facility guard, smart city and self-driving car. However, LiDAR has a large input data size due to its real-time scanning process. So another way for processing a large amount of data are needed in LiDAR system because it can cause a bottleneck. This paper proposes edge computing to compress massive point cloud for processing quickly. Since laser's reflection range of LiDAR sensor is limited, multiple LiDAR should be used to scan a large area. In this reason multiple LiDAR sensor's data should be processed at once to detect or recognize object in real-time. Edge computer compress point cloud efficiently to accelerate data processing and decompress every data in the main cloud in real-time. In this way user can control LiDAR sensor in the main system without any bottleneck. The system we suggest solves the bottleneck which was problem on the cloud based method by applying edge computing service.

Deep Learning-based UWB Distance Measurement for Wireless Power Transfer of Autonomous Vehicles in Indoor Environment (실내환경에서의 자율주행차 무선 전력 전송을 위한 딥러닝 기반 UWB 거리 측정)

  • Hye-Jung Kim;Yong-ju Park;Seung-Jae Han
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.13 no.1
    • /
    • pp.21-30
    • /
    • 2024
  • As the self-driving car market continues to grow, the need for charging infrastructure is growing. However, in the case of a wireless charging system, stability issues are being raised because it requires a large amount of power compared with conventional wired charging. SAE J2954 is a standard for building autonomous vehicle wireless charging infrastructure, and the standard defines a communication method between a vehicle and a power transmission system. SAE J2954 recommends using physical media such as Wi-Fi, Bluetooth, and UWB as a wireless charging communication method for autonomous vehicles to enable communication between the vehicle and the charging pad. In particular, UWB is a suitable solution for indoor and outdoor charging environments because it exhibits robust communication capabilities in indoor environments and is not sensitive to interference. In this standard, the process for building a wireless power transmission system is divided into several stages from the start to the completion of charging. In this study, UWB technology is used as a means of fine alignment, a process in the wireless power transmission system. To determine the applicability to an actual autonomous vehicle wireless power transmission system, experiments were conducted based on distance, and the distance information was collected from UWB. To improve the accuracy of the distance data obtained from UWB, we propose a Single Model and Multi Model that apply machine learning and deep learning techniques to the collected data through a three-step preprocessing process.