• Title/Summary/Keyword: Self-discharge

Search Result 345, Processing Time 0.025 seconds

Permeation Characteristics of the Microfiltration Tubular Module using the Discharged Rod (배출봉을 이용한 정밀여과용 관형 모듈의 투과특성)

  • Chung, Kun-Yong;Choi, Jeong-Gyu
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.285-290
    • /
    • 2009
  • The permeation experiments were carried out for the nominal pore size $0.1\;{\mu}m$ and 5 mm inner diameter microfiltration tubular membrane equipped with self-designed discharging rod in order to determine the effect of fouling reduction. Dioctyl tinoxide (DOTO) latex particle was used to prepare up to 0.5 wt% concentration of feed solution, and the experiments were operated within 1.6 bar. The permeation flux effect on the discharged rod was measured as a result of flux comparison between the cases of equipped and non-equipped discharge rod modules for every experiment. The permeation flux for the case using the discharged rod was enhanced to 20% at 1.6 bar operating pressure. The improvement on permeation flux for using the discharged rod was greater as the concentration of feed increased, and reached up to 43% under 0.5 wt% concentration of feed solution.

Effect of Hydrogen Recirculation on the Performance of Polymer Electrolyte Membrane Fuel Cell with Dead Ended Mode (Dead ended 모드에서 수소 재순환이 고분자전해질연료전지의 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.531-538
    • /
    • 2019
  • As the performance of PEMFC has been improved, the water and heat generated by reaction have increased so, the water and heat management of PEMFC is becoming more important. In this study, hydrogen recirculation was applied as the water management technique and the effect of recirculation flow rate, purge interval and duration on the performance of PEMFC was investigated. Anode pressure, fuel humidity and utilization, water discharge amount was measured to check the effect of purge conditions on performance. As the recirculation flow rate has increased, the performance of PEMFC became lower due to decrease of anode outlet pressure. According to the purge conditions, instantaneous voltage drop has occurred because of accumulated water. In frequent purge conditions, the performance of PEMFC gradually decreased due to fuel humidity control failure. Stable performance and high fuel utilization was achieved on this work by analyzing the effect of purge conditions.

Comparison of the Machine Learning Models Predicting Lithium-ion Battery Capacity for Remaining Useful Life Estimation (리튬이온 배터리 수명추정을 위한 용량예측 머신러닝 모델의 성능 비교)

  • Yoo, Sangwoo;Shin, Yongbeom;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.91-97
    • /
    • 2020
  • Lithium-ion batteries (LIBs) have a longer lifespan, higher energy density, and lower self-discharge rates than other batteries, therefore, they are preferred as an Energy Storage System (ESS). However, during years 2017-2019, 28 ESS fire accidents occurred in Korea, and accurate capacity estimation of LIB is essential to ensure safety and reliability during operations. In this study, data-driven modeling that predicts capacity changes according to the charging cycle of LIB was conducted, and developed models were compared their performance for the selection of the optimal machine learning model, which includes the Decision Tree, Ensemble Learning Method, Support Vector Regression, and Gaussian Process Regression (GPR). For model training, lithium battery test data provided by NASA was used, and GPR showed the best prediction performance. Based on this study, we will develop an enhanced LIB capacity prediction and remaining useful life estimation model through additional data training, and improve the performance of anomaly detection and monitoring during operations, enabling safe and stable ESS operations.

A Case Report of a Functional Dyspepsia Patient with Anxiety and Abdominal Pulsation Treated with Shihogayonggolmoryo-tang (불안, 복부동계를 동반한 기능성 소화불량 환자에 대한 시호가용골모려탕 치험 1례)

  • Yoon, Mi-jung;Kim, Na-yeon;Choi, Hong-sik;Kim, Seung-mo;Kim, Kyung-soon
    • The Journal of Internal Korean Medicine
    • /
    • v.43 no.3
    • /
    • pp.485-492
    • /
    • 2022
  • Objective: The aim of this case report is to report the effect of Korean medicine treatment, including Shihogayonggolmoryo-tang, on anxiety and abdominal pulsation in a patient diagnosed with functional dyspepsia. Method: The patient was treated with Shihogayonggolmoryo-tang, including acupuncture, moxibustion, and cupping therapy. Changes in symptoms were evaluated using a self-reported numerical rating scale (NRS) score every morning. The gastrointestinal symptom score (GIS) was checked on admission and discharge day. Results: After 6 days, the NRS scores for anxiety, abdominal pulsation, abdomen discomfort, and GIS all decreased. Conclusion: The results suggest that Shihogayonggolmoryo-tang with Korean medicine could be effective for treating anxiety, abdominal pulsation, and accompanying abdomen symptoms. However, further evaluation is needed to clarify the relationship between the treatment's effect and Shihogayonggolmoryo-tang.

Surface Modification Technology and Research Trends of Separators for Lithium-Ion Batteries (리튬이온 전지용 분리막의 표면 개질 기술 및 연구 동향)

  • Ha, Seongmin;Kim, Daesup;Kwak, Cheol Hwan;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.343-351
    • /
    • 2022
  • Lithium-ion batteries (LIBs) are considered promising energy storage devices with good performance such as high energy density, slow self-discharge rate, high rate charge capacity, and long battery life. However, the application of these LIBs in the high-energy density electric vehicle and large device industries poses a major safety problem. In order to solve this problem, developing a material having high thermal stability and intrinsic safety is the ultimate solution for improving the stability and electrochemical performance of LIBs. This review introduced a surface modification technology of a separator to overcome the stability problem of a commercial separator, and summarized and summarized the research trends using the modified separator for a lithium-ion battery. Based on this, the future prospects for the separator development by surface modification were discussed.

Biomass-Derived Three-Dimensionally Connected Hierarchical Porous Carbon Framework for Long-Life Lithium-Sulfur Batteries

  • Liu, Ying;Lee, Dong Jun;Lee, Younki;Raghavan, Prasanth;Yang, Rong;Ramawati, Fitria;Ahn, Jou-Hyeon
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.97-102
    • /
    • 2022
  • Lithium sulfur (Li-S) batteries have attracted considerable attention as a promising candidate for next-generation power sources due to their high theoretical energy density, low cost, and eco-friendliness. However, the poor electrical conductivity of sulfur and its insoluble discharging products (Li2S2/Li2S), large volume changes, severe self-discharge, and dissolution of lithium polysulfide intermediates result in rapid capacity fading, low Coulombic efficiency, and safety risks, hindering Li-S battery commercial development. In this study, a three-dimensionally (3D) connected hierarchical porous carbon framework (HPCF) derived from waste sunflower seed shells was synthesized as a sulfur host for Li-S batteries via a chemical activation method. The natural 3D connected structure of the HPCF, originating from the raw material, can effectively enhance the conductivity and accessibility of the electrolyte, accelerating the Li+/electron transfer. Additionally, the generated micropores of the HPCF, originated from the chemical activation process, can prevent polysulfide dissolution due to the limited space, thereby improving the electrochemical performance and cycling stability. The HPCF/S cell shows a superior capacity retention of 540 mA h g-1 after 70 cycles at 0.1 C, and an excellent cycling stability at 2 C for 700 cycles. This study provides a potential biomass-derived material for low-cost long-life Li-S batteries.

The studies on the preference for attachment to the habitat marine environment and habitat space of Sulculus diversicolor supertexta in Jeju Island (제주도 오분자기의 서식 해양 환경과 서식공간에 대한 부착 선호도에 관한 연구)

  • HEO, Nam-hee;KIM, Keun-hyoung;KANG, Kyoung-Bum;KIM, Suk-jong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.2
    • /
    • pp.106-112
    • /
    • 2022
  • As a series of basic research to draw the pilot design measures for developing the habitat apparatus of Sulculus diversicolor supertexta inhabiting the coastal area of Jeju island, this study conducted a water tank experiment to understand the habitat marine environment of Sulculus diversicolor supertexta and the preference of habitat space focusing on the research fisheries performing the discharge of marine products. In the composition degree of marine algae in both fisheries, Donggwi-ri showed the highest gulfweed (79.3%) as brown algae and there were some coralline algae (17.2%) as red algae. Hansu-ri yielded the highest gulfweed (48.1%) as brown algae, which was followed by sea lettuce (10.4%) as green algae. In the preference of habitat space, the shelter angles 40° showed the highest adhesion as number of 82.9, which was followed by 60° and 70° as 69.2 and 68.2 respectively (P<0.05) by reviewing the environmental characteristics of habit of Salculus diversicolor supertexta in the coastal fishery of Jeju Island, when considering the adhesion rate in each of five shelters with different angles. In the future, there should be continuous research and monitoring for designing the fish shelters suitable for the coastal fisheries of Jeju island, and it would be also necessary to add the field-centered sustainable concrete research.

A Study on Effective Discharge Based on Practice Based on The Environment and Effect of Practical Education Based on Video Production (영상제작을 바탕으로 한 실무 중심의 교육의 환경과 그 효과에 따른 실무 중심의 효율적 발전 방안 연구)

  • Jin, Seung-Hyeon
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.7
    • /
    • pp.135-143
    • /
    • 2019
  • This study analyzes the present condition and the environment of the university education centered on the practice in the film field and suggests the effective development plan for the new or improved practice. Recently, as a new breakthrough in infant education in the rapidly declining educational environment, the introduction of arts education, on-site self-study, and practice-centered laboratory exercises are increasing students' satisfaction. However, compared to trend, our practical education and creative education programs are lacking in reality. In this study, we analyze and study the effective development method of education through researching the satisfaction pattern and the education program of the students who are the center of the production practice shown in the movie image production, and building the paradigm, I would like to suggest a direction for the production education.

Development of Highly Efficient Oil-Water Separation Materials Utilizing the Self-Bonding and Microstructuring Characteristics of Aluminum Nitride Nanopowders (질화알루미늄 나노분말의 자가 접착과 미세구조화 특성을 활용한 고효율 유수분리 소재 개발)

  • Heon-Ju Choi;Handong Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.601-607
    • /
    • 2024
  • The discharge of oily wastewater into water bodies and soil poses a serious hazard to the environment and public health. Various conventional techniques have been employed to treat oil-water mixtures and emulsions; Unfortunately, these approaches are frequently expensive, time-consuming, and unsatisfactory outcomes. Porous materials and adsorbents are commonly used for purification, but their use is limited by low separation efficiencies and the risk of secondary contamination. Recent advancements in nanotechnology have driven the development of innovative materials and technologies for oil-contaminated wastewater treatment. Nanomaterials can offer enhanced oil-water separation properties due to their high surface area and tunable surface chemistry. The fabrication of nanofiber membranes with precise pore sizes and surface properties can further improve separation efficiency. Notably, novel technologies have emerged utilizing nanomaterials with special surface wetting properties, such as superhydrophobicity, to selectively separate oil from oil-water mixtures or emulsions. These special wetting surfaces are promising for high-efficiency oil separation in emulsions and allow the use of materials with relatively large pores, enhancing throughput and separation efficiency. In this study, we introduce a facile and scalable method for fabrication of superhydrophobic-superoleophilic felt fabrics for oil/water mixture and emulsion separation. AlN nanopowders are hydrolyzed to create the desired microstructures, which firmly adhere to the fabric surface without the need for a binder resin, enabling specialized wetting properties. This approach is applicable regardless of the material's size and shape, enabling efficient separation of oil and water from oil-water mixtures and emulsions. The oil-water separation materials proposed in this study exhibit low cost, high scalability, and efficiency, demonstrating their potential for broad industrial applications.

Hierarchical SnO2 Nanoflakes Integrated with Carbon Nanofibers as an Advanced Anode Material for High-Performance Lithium-Ion Batteries

  • Ying Liu;Jungwon Heo;Dong-Ho Baek;Dengzhou Liu;Dirfan Zabrian;Mingxu Li;Prasanth Raghavan;Jae-Kwang Kim;Jou-Hyeon Ahn
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.267-275
    • /
    • 2024
  • Lithium-ion batteries (LIBs) have attracted significant attention as potential energy storage solutions due to their high energy density, minimal self-discharge, extended cycle life, and absence of memory effects. However, conventional LIBs use graphite as the anode material and as a result struggle to meet the increasing demand for higher energy density because of the low theoretical capacity of graphite. In order to enhance Li storage capacity and address the current limitations of LIBs, this study designed and analyzed SnO2 nanoflakes/CNF, which is an advanced anode material with a unique hierarchical structure synthesized via a facile method involving incipient wetness followed by annealing. The in-situ formed SnO2 nanoflakes improve the electrolyte accessibility and shorten the ion and electron transport pathways, thereby enhancing the reaction kinetics. Additionally, the CNF matrix enhances the electrical conductivity, accelerates electron transport, and mitigates volume changes. The integrated SnO2 nanoflakes/CNF cell demonstrated outstanding cycling performance and excellent rate capability, achieving a notable reversible capacity of 636 mAh g-1 after 100 cycles at 0.1 C. This study provides valuable insights into the design of high-efficiency anode materials for the advancement of high-performance LIBs.